

Damping Technology

ACE: Your partner for industrial shock absorbers, gas springs and vibration control

Main Catalog 2018 North America

Preface

Dear customer,

You have made the right decision.

You will find over 280 pages of comprehensive information on the application fields of automation control (single direction of movement, i.e. deceleration), motion control (bidirectional movement, i.e. gas springs and dampers), vibration control and safety products. Each section is marked with a different color. This integrated concept is reflected in all documentation and on our www. acecontrols.com website. We also offer an ACE YouTube channel, extensive CAD library and calculation aids.

Innovations can as usual be found in the table of contents and on the individual catalogue pages.

ACE products assist you in making your production and processes faster, more efficient, quieter, easier, safer and more sustainable – underpinned by ACE product quality and our 5-star service.

Yours, Jürgen Roland (Managing Director)

Free Application & Engineering Support

Tell us about your requirements and take advantage of our more than 50 years of expert knowledge in damping technology. Our specialists in engineering discuss your requirements with you and demonstrate our capabilities. Take advantage of our service hotline:

1-800-521-3320

Our regional managers are genuine product specialists. They will visit you onsite and work out customized solutions for you.

ACE service support and products are available in more than 40 countries worldwide.

Online Calculation Program & CAD Database

With our user-friendly calculation program, you can select the right product - online or via download. The CAD data is available in all standard formats in 2D and 3D.

www.acecontrols.com

Our specialist engineers create detailed technical solutions for you including assembly suggestions and details on machine loads, brake time and workload etc.

Automation Control

Motion Control

Vibration Control

Safety Products

Certified Quality

ACE products are exclusively manufactured from high quality and environmentally friendly materials. With constant quality monitoring and performance testing, we guarantee the highest quality products.

ACE pursues continual improvement throughout the production process in order to reduce material and energy consumption, the production of damaging substances and works to recycle or dispose of end products as gently as possible. It is important to us to keep the strain on the environment as low as possible and simultaneously improve our services.

With ongoing optimization of our products, we strive to provide our customers with well designed products which are smaller, more effective and energy saving.

Our Total Product Range

Miniature Shock Absorbers, Industrial Shock Absorbers, Heavy Industrial Shock Absorbers, Profile Dampers, Damping Pads

Industrial Gas Springs (push type), Industrial Gas Springs (pull type), Hydraulic Dampers, Hydraulic Feed Controls, Rotary Dampers

Rubber-Metal Isolators, Vibration-Isolating Pads, Low Frequency Pneumatic Leveling Mounts

Safety Shock Absorbers, Safety Dampers, Clamping Elements

We are your Specialists for Industrial Damping Technology

ACE is the world's globally recognized specialist in the field of industrial damping technology – with agencies in 45 countries on all continents. ACE was founded in Farmington Hills, Michigan in 1962.

ACE customers benefit from sophisticated solutions, valuable innovations and exemplary service around the topic of damping technology. Through close cooperation with leading engineering companies, ACE has established itself as a pioneer in the field of technical progress in damping technology.

This catalog is our attempt to provide a comprehensive service, including all the information you need to find solutions to your damping technology and vibration isolation challenges. ACE develops, produces and sells a wide range of damping products. It comprises industrial and safety shock absorbers, profile dampers, rotary dampers, industrial gas springs, hydraulic dampers, vibration isolators, air springs and hydraulic feed controls.

Our advanced products are designed and engineered to help foward-thinking companies quickly, gently and precisely slow down moving masses or to isolate harmful vibrations.

ACE Product Variety

Concentrated knowledge on more than 280 pages

Page

Automation Control

8	-	9	Industrial shock absorbers – general information
10	-	13	Formulas and calculations
14	-	15	Industrial shock absorbers - capacity chart
		16	Miniature Shock absorbers
18	-	39	Product families
40	-	41	Accessories M5 to M25 – selection chart
42	-	43	Accessories 3/8-32 UNF to 1-12 UNF - selection chart
44	-	47	Accessories M5 to M25 – overview
48	-	49	Accessories 3/8-32 UNF to 1-12 UNF – overview
50	-	51	Accessories – technical information
52	-	53	Application examples
		54	Industrial Shock Absorbers
56	-	88	Product families
90	-	92	Accessories M33 to M64 – overview
93	-	95	Accessories 1-1/4-12 UNF to 2-1/2-12 UNF – overview
		96	Accessories – technical information
97	-	99	Application examples
		100	Heavy Industrial Shock Absorbers
102	-	109	Product families
110	-	111	Special accessories – air/oil tanks
		112	Profile Dampers – TUBUS
		114	Profile dampers – capacity chart
116	-	127	Product families
128	-	129	Application examples
		130	Special Profile Dampers – TUBUS
		132	Damping Pads – SLAB
134	-	140	Product families
		141	Adhesive recommendation and technical information
		142	Chemical resistance
		143	Sample pads
144	-	145	Application examples

146

Motion Control

148	Gas Springs – Push Type
150 - 171	Product families
169	Additional stainless steel gas springs – capacity chart
172 - 173	Application examples
174	Gas Springs – Pull Type
176 - 186	Product families
187	Additional stainless steel gas springs - capacity chart
188 - 189	Gas spring calculation service and fax form
190	Mounting and safety instructions
191	Special accessories - valve actuation and refilling kit
192	Hydraulic Dampers
192 194 - 208	Hydraulic Dampers Product families
_	
194 - 208	Product families
194 - 208 210 - 211	Product families Application examples Accessories for gas springs and hydraulic dampers
194 - 208 210 - 211 212 - 225	Product families Application examples
194 - 208 210 - 211 212 - 225 226	Product families Application examples Accessories for gas springs and hydraulic dampers Hydraulic Feed Controls
194 - 208 210 - 211 212 - 225 226 228 - 231	Product families Application examples Accessories for gas springs and hydraulic dampers Hydraulic Feed Controls Product families

249 Calculations and accessories250 Application examples

252 Vibration Control

254	Vibration isolation
255	Rubber-Metal Isolators
256	Vibration-Isolating Pads
057	and the second

257 Low Frequency Pneumatic Leveling Mounts

258 Safety Products

260	Safety Shock Absorbers
262 - 273	Product families
274	General instructions
275	Formulas and calculations
276 - 277	Application examples
278 280 - 281	Safety Dampers — TUBUS Product families
280 - 281	Product families
280 - 281 282	Product families Clamping Elements

Automation Control

Miniature Shock Absorbers, Industrial Shock Absorbers Heavy Industrial Shock Absorbers, Profile Dampers Damping Pads

Optimum Customization Tailor-made solutions for any application

ACE universal damping solutions convert kinetic energy in to heat. This makes machines faster, quieter, more durable, lighter and therefore more competitive and profitable.

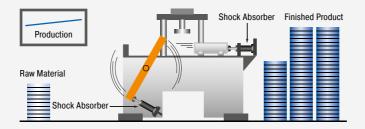
Here you will find the perfect selection of machine elements, which turn damaging forces into harmless heat. These solutions from ACE smoothly decelerate moving loads. This involves the lowest possible stress on machines, which makes the damping products from ACE so valuable.

Industrial Shock Absorbers

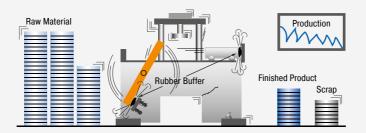
Standard-setting damping solutions

The name says it all. ACE is considered the technology and market leader worldwide for small, medium-sized and heavy industrial shock absorbers is a result of the successful blend of quality, performance and the durability of the solutions.

ACE provides the right shock absorber for every industrial application. Over 200 different models are available, from the smallest model with a 4 mm stroke up to the biggest with 406 mm.


Whether self-compensating or adjustable, with ACE dampers between 0.68 Nm/cycle and 126,500 Nm/cycle can be absorbed and effective weights between 500 g and 204 t can be decelerated with great precision.

In addition, ACE damping solutions impress with knowledgeable consulting, exemplary service and ideal matching accessories.



ACE demo showing a wine glass dropping free fall 1.3 m. Decelerated by a shock absorber, not a drop of wine is spilled.

Stopping with Industrial Shock Absorbers

Stopping with Rubber Buffers, Springs, Dashpots or Cylinder Cushions

Advantages of using industrial shock absorbers

- Safe, reliable production
- Long service life of the machines
- Easy, inexpensive construction
- Low operating costs
- Quiet, economical machines
- Less stress on the machine
- Profit improvement

Results using conventional dampers

- Loss of production
- Machine damage
- Increased maintenance costs
- Increased operating noise
- Higher machine construction costs

ACE Controls Inc. + 23425 Industrial Park Dr. Farmington + US-48335 Michigan + T +1 800-521-3320 + shocks@acecontrols.com + www.acecontrols.com

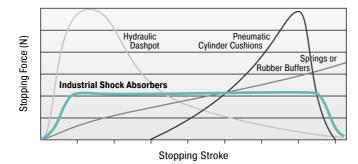
Comparison of Different Damping Elements

When it comes to slowing down moving masses with constant damping force through the stroke, the industrial shock absorber is the right choice. A comparison demonstrates the differences of the damping elements.

ACE Industrial Shock Absorbers (Uniform stopping force through the entire stroke)

The moving load is smoothly and gently brought to rest by a constant resisting force throughout the entire shock absorber stroke. The load is decelerated with the lowest possible force in the shortest possible time eliminating damaging force peaks and shock damage to machines and equipment. This is a linear deceleration force stroke curve and is the curve provided by ACE industrial shock absorbers. In addition they considerably reduce noise pollution.

Hydraulic Dashpot (High stopping force at start of the stroke)

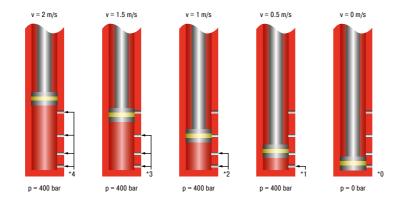

With only one metering orifice the moving load is abruptly slowed down at the start of the stroke. The braking force rises to a very high peak at the start of the stroke (giving high shock loads) and then falls away rapidly.

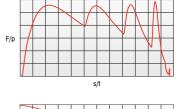
Springs and Rubber Buffers (High stopping forces at end of stroke)

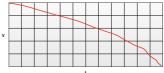
At full compression. Also they store energy rather than dissipating it, causing the load to rebound back again.

Air Buffers, Pneumatic Cylinder Cushions (High stopping force at end of stroke)

Due to the compressibility of air these have a sharply rising force characteristic towards the end of the stroke. The majority of the energy is absorbed near the end of the stroke.




Comparison


The comparison shows the differences of the damping in a direct comparison of stopping force to stopping stroke.

Function of the Pressure Chamber

If a moving mass hits the industrial shock absorber, the piston puts the oil in the pressure chamber into motion. The oil is pressed through the metering orifices, which converts the discharged energy into heat. The metering orifices are arranged on the stroke so that the mass is dulled with a constant damping force. The hydraulic pressure is maintained throughout the entire braking process nearly constant.

* The load velocity reduces continously as you travel through the stroke due to the reduction in the number of metering orifices (*) in action. The internal pressure remains essentially constant and thus the force vs. stroke curve remains linear. $F = force (N), p = internal pressure (bar) \\ s = stroke (m), t = deceleration time (s), \\ v = velocity (m/s)$

Calculation Data for the Design of Industrial Shock Absorbers

ACE shock absorbers provide linear deceleration and are therefore superior to other kinds of damping elements. It is easy to calculate around 90 % of applications knowing only the following five parameters:

1.	Weight to be decelerated (weight)	W	[kg]
2.	Impact velocity at shock absorber	v _D	[m/s]
3.	Propelling force	F	[N]
4.	Cycles per hour	C	[/hr]
5.	Number of absorbers in parallel	n	

Key to	o symbols used				
E1	Kinetic energy per cycle	Nm	3 ST	Tall torque factor (normally 2.5)	1 to 3
E ₂	Propelling force energy per cycle	Nm	Т	Propelling torque	Nm
$\bar{E_3}$	Total energy per cycle $(E_1 + E_2)$	Nm	I	Moment of Inertia	kgm ²
¹ E ₄	Total energy per hour $(E_3 \cdot c)$	Nm/hr	g	Acceleration due to gravity = 9.81	m/s ²
We	Effective weight	kg	Ĥ	Drop height excl. shock absorber stroke	m
W	Weight to be decelerated	kg	S	Shock absorber stroke	m
n	Number of shock absorbers (in parallel)		L/R/r	Radius	m
² v	Velocity at impact	m/s	Q	Reaction force	Ν
2 V _D	Impact velocity at shock absorber	m/s	μ	Coefficient of friction	
ω	Angular velocity at impact	rad/s	t	Deceleration time	S
F	Propelling force	Ν	а	Deceleration	m/s²
С	Cycles per hour	1/hr	α	Side load angle	۰
Р	Motor power	kW	β	Angle of incline	•

¹ All mentioned values of E₄ in the capacity charts are only valid for room temperature. There are reduced values at higher temperature ranges.

² v or v_D is the final impact velocity of the mass. With accelerating motion the final impact velocity can be 1.5 to 2 times higher than the average. Please take this into account when calculating kinetic energy.

³ ST [≙] relation between starting torque and running torque of the motor (depending on the design)

In all the following examples the choice of shock absorbers made from the capacity chart is based upon the values of (E₃), (E₄), (We) and the desired shock absorber stroke (s).

Note:

When using several shock absorbers in parallel, the values (E₃), (E₄) and (We) are divided according to the number of units used.

Reaction force Q [N] $Q = \frac{1.5 \cdot E_3}{s}$

Stopping time t [s] $t = \frac{2.6 \cdot s}{v_D}$

Deceleration rate a [m/s²] $a = \frac{0.75 \cdot v_D^2}{s}$

Approximate values assuming correct adjustment. Add safety margin if necessary. (Exact values will depend upon actual application data and can be provided on request.)

Application	Formula	Example	
1 Weight without propelling force $\downarrow s \downarrow -$ $\downarrow w$ $\downarrow s \downarrow -$ $\downarrow s \downarrow -$	$\begin{array}{l} E_{1} &= W \cdot v^{2} \cdot 0.5 \\ E_{2} &= 0 \\ E_{3} &= E_{1} + E_{2} \\ E_{4} &= E_{3} \cdot c \\ v_{D} &= v \\ We &= W \end{array}$		$\begin{array}{rcl} E_1 &= 100 \cdot 1.5^2 \cdot 0.5 &=& 113 \ \mbox{Nm} \\ E_2 &= 0 & & \\ E_3 &= 113 + 0 & =& \\ E_4 &= 113 \cdot 500 & =& \frac{56500 \ \mbox{Nm/hr}}{100 \ \mbox{kg}} \\ \mbox{We} &= W & =& \frac{100 \ \mbox{kg}}{100 \ \mbox{kg}} \end{array}$
 2 Weight with propelling force Fp	$\begin{split} E_1 &= W \cdot v^2 \cdot 0.5 \\ E_2 &= F \cdot s \\ E_3 &= E_1 + E_2 \\ E_4 &= E_3 \cdot c \\ v_D &= v \\ We &= \frac{2 \cdot E_3}{v_D^2} \\ \end{split}$		$ \begin{array}{llllllllllllllllllllllllllllllllllll$
3 Weight with motor drive	$\begin{array}{l} E_{1} &= W \cdot v^{2} \cdot 0.5 \\ E_{2} &= \frac{1000 \cdot P \cdot ST \cdot s}{v} \\ E_{3} &= E_{1} + E_{2} \\ E_{4} &= E_{3} \cdot c \\ v_{D} &= v \\ We &= \frac{2 \cdot E_{3}}{v_{D}^{2}} \end{array}$		$\begin{array}{llllllllllllllllllllllllllllllllllll$
4 Weight on driven rollers $\downarrow s \downarrow -$ $\downarrow s$	$\begin{array}{l} E_{1} &= W \cdot v^{2} \cdot 0.5 \\ E_{2} &= W \cdot \mu \cdot g \cdot s \\ E_{3} &= E_{1} + E_{2} \\ E_{4} &= E_{3} \cdot c \\ v_{D} &= v \\ We &= \frac{2 \cdot E_{3}}{v_{D}^{2}} \end{array}$		$\begin{array}{rcl} E_1 &= 250 \cdot 1.5^2 \cdot 0.5 &=& 281 \ \text{Nm} \\ E_2 &= 250 \cdot 0.2 \cdot 9.81 \cdot 0.05 &=& 25 \ \text{Nm} \\ E_3 &= 281 + 25 &=& \underline{306 \ \text{Nm}} \\ E_4 &= 306 \cdot 180 &=& \underline{55080 \ \text{Nm/hr}} \\ We &= 2 \cdot 306 : 1.5^2 &=& \underline{272 \ \text{kg}} \\ \end{array}$ Chosen from capacity chart: Model MC4550-2 self-compensating
5 Swinging weight with propelling force $V(\omega)$ Vs + T	$\begin{split} E_1 &= W \cdot v^2 \cdot 0.5 = 0.5 \cdot 1 \cdot \omega^2 \\ E_2 &= \frac{T \cdot s}{R} \\ E_3 &= E_1 + E_2 \\ E_4 &= E_3 \cdot c \\ v_D &= \frac{v \cdot R}{L} = \omega \cdot R \\ We &= \frac{2 \cdot E_3}{v_D^2} \end{split}$		$\begin{array}{llllllllllllllllllllllllllllllllllll$
6 Free falling weight	$\begin{split} E_1 &= W \cdot g \cdot H \\ E_2 &= W \cdot g \cdot s \\ E_3 &= E_1 + E_2 \\ E_4 &= E_3 \cdot c \\ v_D &= \sqrt{2 \cdot g \cdot H} \\ We &= \frac{2 \cdot E_3}{v_D^2} \end{split}$	W = 30 kg H = 0.5 m c = 400 /hr s = 0.050 m (chosen)	$\begin{array}{rcl} E_1 &= 30 \cdot 0.5 \cdot 9.81 &=& 147 & Nm \\ E_2 &= 30 \cdot 9.81 \cdot 0.05 &=& 15 & Nm \\ E_3 &= 147 + 15 &=& \underline{162} & Nm \\ E_4 &= 162 \cdot 400 &=& \underline{64800} & Nm/hr \\ v_D &= \sqrt{2 \cdot 9.81 \cdot 0.5} &=& 3.13 & m/s \\ We &= 2 \cdot 162 : 3.13^2 &=& \underline{33} & kg \end{array}$ Chosen from capacity chart: Model MC3350-1 self-compensating


ACE

ACE Controls Inc. + 23425 Industrial Park Dr. Farmington + US-48335 Michigan + T +1 800-521-3320 + F +1 248-476-2470 + shocks@acecontrols.com + www.acecontrols.com

Formulas and Calculations

Application	Formula	Example	
6.1 weight rolling/sliding down incline	$ \begin{array}{l} E_1 &= W \cdot g \cdot H = W \cdot v_D^2 \cdot 0.5 \\ E_2 &= W \cdot g \cdot sin\beta \cdot s \\ E_3 &= E_1 + E_2 \\ E_4 &= E_3 \cdot c \\ v_D &= \sqrt{2 \cdot g \cdot H} \\ We &= \frac{2 \cdot E_3}{v_D^2} \\ \end{array} \\ E_2 &= (F - W \cdot g \cdot sin\beta) \cdot s \\ E_2 &= (F + W \cdot g \cdot sin\beta) \cdot s \end{array} $	W = 500 kg H = 0.1 m c = 200 /hr B = 10 °C	$\begin{array}{rcl} E_1 = 500 \cdot 9.81 \cdot 0.1 & = & 490.5 \ \text{Nm} \\ E_2 = 50 \cdot 9.81 \cdot \sin(10) \cdot 0.075 & = & 63.9 \ \text{Nm} \\ E_3 = 490.5 + 63.9 & = & 554.4 \ \text{Nm} \\ E_4 = 554.4 \cdot 200 & = & 11880.0 \ \text{Nm/hr} \\ \text{Chosen from capacity chart:} \\ \text{Model MC4575-2 self-compensating} \end{array}$
6.2 Weight free falling about a pivot point tan $\alpha = \frac{s}{R}$	$ \begin{array}{l} E_1 &= W \cdot g \cdot H \\ E_2 &= 0 \\ E_3 &= E_1 + E_2 \\ E_4 &= E_3 \cdot c \\ v_D &= \sqrt{2 \cdot g \cdot H} \cdot \frac{R}{L} \\ \end{array} \\ We &= \frac{2 \cdot E_3}{v_D^2} \end{array} $	W = 50 kg H = 1 m c = 50 /hr R = 300 mm L = 500 mm	$\begin{array}{llllllllllllllllllllllllllllllllllll$
7 Rotary index table with propelling torque $V(\omega)$	$\begin{split} E_1 &= W \cdot v^2 \cdot 0.25 = 0.5 \cdot I \cdot \omega^2 \\ E_2 &= \frac{T \cdot s}{R} \\ E_3 &= E_1 + E_2 \\ E_4 &= E_3 \cdot c \\ v_D &= \frac{v \cdot R}{L} = \omega \cdot R \\ We &= \frac{2 \cdot E_3}{v_D^2} \end{split}$		$\begin{array}{rcl} E_1 &= 1000 \cdot 1.1^2 \cdot 0.25 &=& 303 & Nm \\ E_2 &= 300 \cdot 0.025 : 0.8 &=& 63 & Nm \\ E_3 &= 28 + 9 &=& 366 & Nm \\ E_4 &= 37 \cdot 1200 &=& 36600 & Nm/hr \\ v_D &= 1.1 \cdot 0.8 : 1.25 &=& 0.7 & m/s \\ We &= 2 \cdot 366 : 0.7^2 &=& 1494 & kg \\ \end{array}$ Chosen from capacity chart: Model MC4550-3 self-compensating Check the side load angle, tan α = s/R, with regard to "Max. Side Load Angle" in the capacity chart (see example 6.2)
8 Swinging arm with propelling torque (uniform weight distribution) $V(\omega)$ V_s V_s V_s T	$\begin{split} E_1 &= W \cdot v^2 \cdot 0.17 = 0.5 \cdot \cdot \omega^2 \\ E_2 &= \frac{T \cdot s}{R} \\ E_3 &= E_1 + E_2 \\ E_4 &= E_3 \cdot c \\ v_D &= \frac{v \cdot R}{L} = \omega \cdot R \\ We &= \frac{2 \cdot E_3}{v_D^2} \end{split}$		$\begin{array}{rcl} E_1 &= 0.5 \cdot 56 \cdot 1^2 &=& 28 & Nm \\ E_2 &= 300 \cdot 0.025 : 0.8 &=& 9 & Nm \\ E_3 &= 28 + 9 &=& \frac{37 & Nm}{28} \\ E_4 &= 37 \cdot 1200 &=& \frac{44400 & Nm/hr}{0.8 & m/s} \\ W_p &= 1 \cdot 0.8 &=& 0.8 & m/s \\ We &= 2 \cdot 37 : 0.8^2 &=& \underline{116} & \underline{kg} \\ \end{array}$ Chosen from capacity chart: Model MC600 self-compensating Check the side load angle, tan α = s/R, with regard to "Max. Side Load Angle" in the capacity chart (see example 6.2)
 9 Swinging arm with propelling force (uniform weight distribution) 	$\begin{split} E_1 &= W \cdot v^2 \cdot 0.17 = 0.5 \cdot I \cdot \omega^2 \\ E_2 &= \frac{F \cdot r \cdot s}{R} = \frac{T \cdot s}{R} \\ E_3 &= E_1 + E_2 \\ E_4 &= E_3 \cdot c \\ v_D &= \frac{v \cdot R}{L} = \omega \cdot R \\ We &= \frac{2 \cdot E_3}{v_D^2} \end{split}$		$\begin{array}{rcl} E_1 &= 1000 \cdot 2^2 \cdot 0.17 &= & 680 & Nm \\ E_2 &= 7000 \cdot 0.6 \cdot 0.05 : 0.8 &= & 263 & Nm \\ E_3 &= 680 + 263 &= & 943 & Nm \\ E_4 &= 943 \cdot 900 &= & & & & & & \\ 848 \overline{700} & & Nm/hr \\ v_D &= 2 \cdot 0.8 : 1.2 &= & & & & & \\ 1.33 & m/s \\ We &= 2 \cdot 943 : 1.33^2 &= & & & & & \\ 1066 & kg \\ \end{array}$ Chosen from capacity chart: Model CA2x2-1 self-compensating
10 Weight lowered at controlled speed	$\begin{array}{l} E_{1} &= W \cdot v^{2} \cdot 0.5 \\ E_{2} &= W \cdot g \cdot s \\ E_{3} &= E_{1} + E_{2} \\ E_{4} &= E_{3} \cdot c \\ v_{D} &= v \\ We &= \frac{2 \cdot E_{3}}{v_{D}^{2}} \end{array}$	W = 6000 kg v = 1.5 m/s s = 0.305 m (chosen) c = 60 /hr	$\begin{array}{rcl} E_1 &= 6000 \cdot 1.5^2 \cdot 0.5 &= & 6750 & Nm \\ E_2 &= 6000 \cdot 9.81 \cdot 0.305 &= & 17952 & Nm \\ E_3 &= 6750 + 17952 &= & \underline{24702} & Nm \\ E_4 &= 24702 \cdot 60 &= & \underline{1482120} & Nm/hr \\ We &= 2 \cdot 24702 : 1.5^2 &= & \underline{21957} & \underline{kg} \end{array}$ Chosen from capacity chart: Model CA3x12-2 self-compensating

Effective Weight (We)

The effective weight (We) can either be the same as the actual weight (examples A and C), or it can be an imaginary weight representing a combination of the propelling force or lever action plus the actual weight (examples B and D).

Application	Example
A Weight without propelling force Formula We = W W W V V V V V V V V	W = 100 kg $v_{D} = v = 2 \text{ m/s}$ $E_{1} = E_{3} = 200 \text{ Nm}$ $We = \frac{2 \cdot 200}{4} = 100 \text{ kg}$
B Weight with propelling force Formula $We = \frac{2 \cdot E_3}{v_D^2}$ Fp ψ	
C Weight without propelling force direct against shock absorber Formula We = W	W = 20 kg $v_D = v = 2 m/s$ s = 0.1 m $E_1 = E_3 = 40 Nm$ $We = \frac{2 \cdot 40}{2^2} = 20 kg$
D Weight without propelling force with mechanical advantage Formula $We = \frac{2 \cdot E_3}{v_D^2}$	W = 20 kg v = 2 m/s v _D = 0.5 m/s s = 0.1 m E ₁ = E ₃ = 40 Nm We = $\frac{2 \cdot 40}{0.5^2}$ = 320 kg

		Shock Absorbe	1	ve Weight		Self-Compensating Shock Absorbers			we Weight	abt	
	Stroke	Energy capacity	We min.	We max.	Page		Stroke	Energy capacity	We min.	We max.	Dec
TYPES	mm	Nm/cycle	kg	we max.	Faye	TYPES	mm	Nm/cycle	kg	we max. kg	Pag
MC5M-1-B	4.1	0.68	0.5	4.4	19	MC3350-2	48.6	350	60	250	57
1C5M-2-B	4.1	0.68	3.8	10.8	19	MC3350-2 MC3350-3	48.6	350	210	840	57
											_
1C5M-3-B	4.1	0.68	9.7	18.7	19	MC3350-4	48.6	350	710	2,830	57
IC9M-2-B	5	1	0.8	4.1	19	MC4525-0	23.1	370	7	27	58
IC9M-1-B	5	1	0.6	3.2	19	MC4525-1	23.1	370	20	90	58
1C25	6.6	2.8	1.8	5.4	19	MC4525-2	23.1	370	80	310	5
AC25H	6.6	2.80	4.5	13.6	19	MC4525-3	23.1	370	260	1,050	5
AC25L	6.6	2.80	1.8	2.2	19	MC4525-4	23.1	370	890	3,540	5
MC30M-1	8	3.50	0.4	1.9	19	MC4550-0	48.5	740	13	54	58
AC30M-2	8	3.50	1.8	5.4	19	MC4550-1	48.5	740	45	180	5
AC30M-3	8	3.50	5.0	15.0	19	MC4550-2	48.5	740	150	620	5
MC75-1	10	9	0.22	1.1	19	MC4550-3	48.5	740	520	2,090	5
AC75-2	10	9		6.4	19		48.5	740			5
			0.91			MC4550-4			1,800	7,100	
MC75-3	10	9	2.72	36.2	19	MC4575-0	73.9	1,130	20	80	58
MC75-4	10	9	25	72	19	MC4575-1	73.9	1,130	70	270	58
AC150	12.5	20	0.9	10	21	MC4575-2	73.9	1,130	230	930	58
MC150H	12.5	20	9	86	21	MC4575-3	73.9	1,130	790	3,140	58
MC150H2	12.5	20	70	86	21	MC4575-4	73.9	1,130	2,650	10,600	58
MC150H3	12.5	20	181	200	21	MC6450-0	48.6	1,870	35	140	59
MC225	12.5	41	2.3	25	21	MC6450-1	48.6	1,870	140	540	59
MC225H	12.5	41	2.3	230	21	MC6450-2	48.6	1,870	460	1,850	59
			180								
MC225H2	12.5	41		910	21	MC6450-3	48.6	1,870	1,600	6,300	59
MC225H3	12.5	41	816	2,000	21	MC6450-4	48.6	1,870	5,300	21,200	59
MC600	25	136	9	136	21	MC64100-0	99.4	3,730	70	280	59
ИС600Н	25.4	136	113	1,130	21	MC64100-1	99.4	3,730	270	1,100	5
MC600H2	25.4	136	400	2,300	21	MC64100-2	99.4	3,730	930	3,700	5
MC600H3	25.4	136	2,177	5,000	21	MC64100-3	99.4	3,730	3,150	12,600	5
SC25M-5	8	10	1	5	31	MC64100-4	99.4	3,730	10,600	42,500	59
C25M-6	8	10	4	44	31	MC64150-0	150	5,650	100	460	5
C25M-7	8	10	42	500	31	MC64150-1	150	5,650	140	1,640	5
SC75M-5	10	16	1	8	31	MC64150-2	150	5,650	1,390	5,600	59
SC75M-6	10	16	7	78	31	MC64150-3	150	5,650	4,700	18,800	59
											_
SC75M-7	10	16	75	800	31	MC64150-4	150	5,650	16,000	63,700	59
SC190M-5	12	31	2	16	31	SC3325-5	23.2	155	1,350	2,700	7:
SC190M-6	12	31	13	140	31	SC3325-6	23.2	155	2,500	5,400	7:
SC190M-7	12	31	136	1,550	31	SC3325-7	23.2	155	5,000	9,000	7
SC300-5	15	73	11	45	33	SC3325-8	23.2	155	8,600	13,500	7
SC300-6	15	73	11	136	33	SC3350-5	48.6	310	2,700	5,000	7
SC300-7	15	73	91	181	33	SC3350-6	48.6	310	4,500	10,000	7
6C300-8	15	73	135	680	33	SC4525-5	23.1	340	3,400	6,800	74
SC300-9	15	73	320	1,950	33	SC4525-6	23.1	340	6,350	13,600	74
	23	210		1,930	33	SC4525-7		340			
SC650-5			23				23.1		12,700	22,500	74
SC650-6	23	210	90	360	33	SC4525-8	23.1	340	20,500	40,000	74
SC650-7	23	210	320	1,090	33	SC4550-5	48.5	680	6,800	12,000	74
SC650-8	23	210	770	2,630	33	SC4550-6	48.5	680	12,000	27,000	74
SC650-9	23	210	1,800	6,350	33	SC4550-7	48.5	680	26,000	44,000	74
SC25M-5-HC	4	2.25	1	5	35	CA2X2-1	50	3,600	700	2,200	10
SC25M-6-HC	4	2.25	4	44	35	CA2X2-2	50	3,600	1,800	5,400	10
6C25M-7-HC	4	2.25	42	500	35	CA2X2-3	50	3,600	4,500	13,600	10
C75M-5-HC	5	8.5	1	8	35	CA2X2-4	50	3,600	11,300	34,000	10
SC75M-5-HC	5	8.5	7	78	35	CA2X2-4 CA2X4-1	102	7,200		4,400	10
									1,400		
C75M-7-HC	5	8.5	75	800	35	CA2X4-2	102	7,200	3,600	11,000	10
SC190M-5-HC	8	20	2	16	35	CA2X4-3	102	7,200	9,100	27,200	10
SC190M-6-HC	8	31	13	140	35	CA2X4-4	102	7,200	22,600	68,000	10
C190M-7-HC	8	31	136	1,550	35	CA2X6-1	152	10,800	2,200	6,500	10
C300-5-HC	8	73	11	45	35	CA2X6-2	152	10,800	5,400	16,300	10
C300-6-HC	8	73	11	136	35	CA2X6-3	152	10,800	13,600	40,800	10
C300-7-HC	8	73	91	181	35	CA2X6-4	152	10,800	34,000	102,000	10
C300-8-HC	8	73	135	680	35	CA2X8-1	203	14,500	2,900	8,700	10
C300-9-HC	8	73	320	1,950	35	CA2X8-2	203	14,500	7,200	21,700	10
C650-5-HC	15	136	23	1,950	35	CA2X8-2	203	14,500		54,400	
									18,100		10
C650-6-HC	15	136	90	360	35	CA2X8-4	203	14,500	45,300	136,000	10
C650-7-HC	15	136	320	1,090	35	CA2X10-1	254	18,000	3,600	11,000	10
C650-8-HC	15	136	770	2,630	35	CA2X10-2	254	18,000	9,100	27,200	10
C650-9-HC	15	210	1,800	6,350	35	CA2X10-3	254	18,000	22,600	68,000	10
1C3325-0	23.2	170	3	11	57	CA2X10-4	254	18,000	56,600	170,000	10
IC3325-1	23.2	170	9	40	57	CA3X5-1	127	14,125	2,900	8,700	10
IC3325-1	23.2	170	30	120	57	CA3X5-1	127	14,125		21,700	10
									7,250		
AC3325-3	23.2	170	100	420	57	CA3X5-3	127	14,125	18,100	54,350	10
AC3325-4	23.2	170	350	1,420	57	CA3X5-4	127	14,125	45,300	135,900	10
AC3350-0	48.6	330	5	22	57	CA3X8-1	203	22,600	4,650	13,900	10
AC3350-1	48.6	350	18	70	57	CA3X8-2	203	22,600	11,600	34,800	10

Self-Comp	Self-Compensating Shock Absorbers						
			Effectiv	e Weight			
TYPES	Stroke mm	Energy capacity Nm/cycle	We min. kg	We max. kg	Page		
CA3X8-3	203	22,600	29,000	87,000	104		
CA3X8-4	203	22,600	72,500	217,000	104		
CA3X12-1	305	33,900	6,950	20,900	104		
CA3X12-2	305	33,900	17,400	52,200	104		
CA3X12-3	305	33,900	43,500	130,450	104		
CA3X12-4	305	33,900	108,700	326,000	104		
CA4X6-3	152	47,500	3,500	8,600	105		
CA4X6-5	152	47,500	8,600	18,600	105		
CA4X6-7	152	47,500	18,600	42,700	105		
CA4X8-3	203	63,300	5,000	11,400	105		
CA4X8-5	203	63,300	11,400	25,000	105		
CA4X8-7	203	63,300	25,000	57,000	105		
CA4X16-3	406	126,500	10,000	23,000	105		
CA4X16-5	406	126,500	23,000	50,000	105		
CA4X16-7	406	126,500	50,000	115,000	105		

	Shock Absorbers	Soft Contac	ct and Self-Com	pensating
--	------------------------	-------------	-----------------	-----------

				Effective	e Weight		
			Soft-O	Contact	Self-Com	pensating	
	Stroke	Energy capacity	me min.	me max.	me min.	me max.	Page
TYPES	mm	Nm/cycle	kg	kg	kg	kg	
SC190-0	16	25	-	-	0.7	4	29
SC190-1	16	25	2.3	6	1.4	7	29
SC190-2	16	25	5.5	16	3.6	18	29
SC190-3	16	25	14.0	41	9.0	45	29
SC190-4	16	25	34.0	91	23.0	100	29
SC300-0	19	33	-	-	0.7	2	29
SC300-1	19	33	2.3	7	1.4	8	29
SC300-2	19	33	7.0	23	4.5	27	29
SC300-3	19	33	23	70	14	80	29
SC300-4	19	33	68	180	32	200	29
SC650-0	25.4	73	-	-	2.3	14	29
SC650-1	25.4	73	11	40	7.75	45	29
SC650-2	25.4	73	34	110	22.5	136	29
SC650-3	25.4	73	110	360	68	400	29
SC650-4	25.4	73	360	1,200	200	1,200	29
SC925-0	40	110	8	25	4.5	29	29
SC925-1	40	110	22	72	14	90	29
SC925-2	40	110	59	208	40	227	29
SC925-3	40	110	181	612	113	726	29
SC925-4	40	110	544	1,952	340	2,088	29

		Max. Ener	gy Capacity	Effectiv	/e Weight	
	Stroke	E ₃	E4	We min.	We max.	Page
TYPES	mm	Nm/cycle	Nm/h	kg	kg	
MA30M	8	3.5	5,650	0.23	15	37
MA50M	7.2	5.5	13,550	4.5	20	37
MA35	10.2	4	6,000	6	57	37
MA150	12.7	22	35,000	1	109	37
MA225	19	25	45,000	2.30	226	37
MA600	25	68	68,000	9	1,360	37
MA900	40	100	90,000	14	2,040	37
AS3/8X1	25.4	68	68,000	4.54	567	39
NA3/8x1	25.4	68	68,000	4.54	577	39
MA3325	23.2	215	75,000	9	1,700	77
ML3325	23.2	170	75,000	300	50,000	77
MA3350	48.6	425	85,000	13	2,500	77
ML3350	48.6	425	85,000	500	80,000	77
MA4525	23.1	425	107,000	40	10,000	78
ML4525	23.1	850	112,000	3,000	110,000	78
MA4550	48.5	850	112,000	70	14,500	78
ML4550	48.5	850	112,000	5.000	180,000	78
MA4575	73.9	1,300	146,000	70	15,000	78
ML6425	23.2	1,135	124,000	7,000	300,000	79
			,			
MA6450	48.6	2,275	146,000	220	50,000	79
ML6450	48.6	2,275	146,000	11,000	500,000	79
MA64100	99.4	4,520	192,000	270	52,000	79
MA64150	150	6,101	248,000	330	80,000	79
SASL11/8X1-R	23	900	142,000	318	320,000	81
SASL11/8X2-R	48.5	1,800	170,000	385.5	590,000	81
SALD½X1-P	23.2	153	85,000	4.5	1,225	83
SALD½X2-P	48.5	350	98,000	9.5	2,585	83
SALD¾X1-P	23.2	340	124,000	9	8,100	84
SALD¾X2-P	48.5	680	147,000	26	14,500	84
SALD¾X3-P	74	1,000	181,000	22.7	21,000	84
SALD11/8X2-P	48.5	1,800	170,000	54	22,700	85
SALD11/8X4-P	99	3,600	225,000	72.5	45,000	85
SALD11/8X6-P	150	5,400	280,000	91	68,000	85
SALDN¾X1-RF	25	390	107,000	45	10,000	87
SALDN¾X2-RF	50	780	113,000	72.6	14,500	87
SALDN¾X3-RF	75	1,200	147,000	115	15,000	87
SALDN¾X1-RR	25	390	107,000	43	10,000	88
SALDN¾X2-RR	50	780	113,000	72.6	14,500	88
SALDN¾X3-RR	75	1,200	147,000	115	15,000	88
A1½X2	50	2,350	362,000	195	32,000	107
A1½X3½	89	4,150	633,000	218	36,000	107
A1½X5	127	5,900	904,000	227	41,000	107
A1½X6½	165	7,700	1,180,000	308	45,000	107
A2X2	50	3,600	1,100,000	250	77,000	108
A2X4	102	9,000	1,350,000	250	82,000	108
A2X6	152	13,500	1,600,000	260	86,000	108
A2X8	203	19,200	1,900,000	260	90,000	108
A2X10	254	23,700	2,200,000	320	113,000	108
A3X5	127	15,800	2,260,000	480	154,000	109
A3X8	203	28,200	3,600,000	540	181,500	103
A3X12	305	44,000	5,400,000	610	204,000	109

Miniature Shock Absorbers

Tuning for almost any design

Miniature shock absorbers from ACE are tried-and-tested quality products used in millions of industrial designs throughout the world. They optimize machines in an equally reliable and effective way by decelerating loads quickly and without recoil.

The compact, maintenance-free, hydraulic machine elements can be easily and quickly integrated in any design and certain models can be directly integrated in pneumatic cylinders. They reduce the load and increase the efficiency for handling devices, rotary and pivoting actuators, linear cylinders and many other industrial applications. ACE ensures a long service life with innovative sealing techniques, shock absorber and inner pressure chambers fully machined from solid high tensile alloy steel.

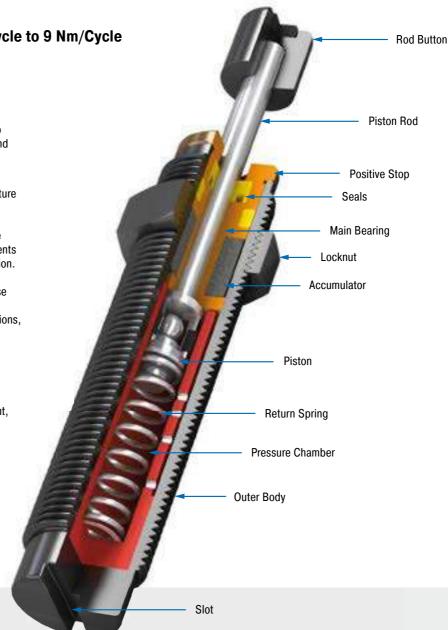
Miniature Shock Absorbers

MC5 to MC75	Page 18
Self-Compensating Shock absorbers in miniature format Miniature slides, Pneumatic cylinders, Handling modules, Copiers	
MC150 to MC600 Self-Compensating, Rolling Diaphragm Technology Exceptionally high endurance and with the lowest resetting force Linear slides, Pneumatic cylinders, Swivel units, Handling modules	Page 20
MC150-V4A to MC600-V4A Self-Compensating, Stainless Steel, Rolling Diaphragm Technology	Page 22
Exceptionally high endurance with stainless steel corrosion protection Clean room areas, Pharmaceutical industry, Medical technology, Food industry	
PMCN150 to PMCN600 Self-Compensating, Rolling Diaphragm Technology, TPU Bellow	Page 24
Reliable protection from fluids and particulate Finishing and processing centers, Clean room areas, Pharmaceutical industry	
PMCN150-V4A to PMCN600-V4A	Page 26
Self-Compensating, Rolling Diaphragm Technology, TPU Bellow Optimum corrosion protection Finishing and processing centers, Clean room areas, Pharmaceutical industry	
SC190 to SC925	Page 28
Self-Compensating, Soft-Contact Long stroke and soft impact Linear slides, Pneumatic cylinders, Handling modules, Machines and plants	
SC ² 25 to SC ² 190	Page 30
Self-Compensating, Piston Tube Technology Piston tube design for maximum energy absorption Linear slides, Pneumatic cylinders, Swivel units, Handling modules	
SC ² 300 to SC ² 650	Page 32
Self-Compensating, Piston Tube Technology Piston tube design for maximum energy absorption Turntables, Swivel units, Robot arms, Linear slides, Pneumatic	
SC25-HC to SC650-HC	Page 34
Self-Compensating Miniature self compensating shocks for high-speed applications Linear slides, Tool machines, Handling modules, Production plants	
MA30 to MA900	Page 36
Adjustable Stepless adjustment Linear slides, Pneumatic cylinders, Swivel units, Handling modules	
3/8x1	Page 38
Adjustable Miniature adjustable shock delivers convenience Linear slides, Transport industry, Tool machines, Handling modules	

Products for UNF and metric thread available

MC5 to MC75

Shock absorbers in miniature format


Self-Compensating Energy capacity 0.68 Nm/Cycle to 9 Nm/Cycle

Stroke 4 mm to 10 mm

Ideal for compact, efficient designs: The miniature size of the product family MC5 to MC75 delivers very short overall lengths and low return forces.

The outer body of each shock, produced from one solid piece, is filled with temperature stable oil, offers a continuous outer body thread including a supplied lock nut and also has an integrated positive stop. These maintenance-free hydraulic machine elements from ACE are ready for immediate installation. A wide range of energy absorption and effective weight are further benefits in these compact units. Self-compensating shock absorbers react to changing energy conditions, without adjustment.

These self-compensating miniature shock absorbers are perfectly suited to use in applications such as rotary actuators, automation, light industrial manufacturing, material handling and packaging equipment, medical, electronics and robotics.

Technical Data

Energy capacity: 0.68 Nm/Cycle to 9 Nm/Cycle

Impact velocity range: 0.15 m/s to 4 m/s Operating temperature range: -10 $^{\circ}$ C to 66 $^{\circ}$ C

Mounting: In any position

Positive stop: Integrated

Material: Outer body, Accessories: Steel corrosion-resistant coating; Piston rod: Hardened stainless steel; Rod end button: Steel, MC25 and MC75: Elastomer Insert; Locknut: Steel, MC5 and MC9: Aluminium

Damping medium: Oil, temperature stable

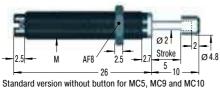
Application field: Miniature slides, Pneumatic cylinders, Handling modules, Copiers, Measuring tables, Machines and plants, Locking systems

Note: If precise end position data is required consider use of a stop collar.

Safety information: External materials in the surrounding area can attack the seal components and lead to a shorter service life. Please contact ACE for appropriate solution suggestions. Do not paint the shock absorbers due to heat emission.

On request: Increased corrosion protection. Special finishes. Models without rod end button also available on request.

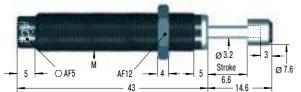
Products for UNF and metric thread available


Miniature Shock Absorbers MC5 to MC75

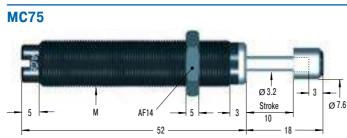
Self-Compensating

MC5M

MC9M

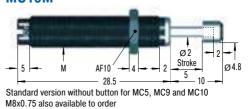


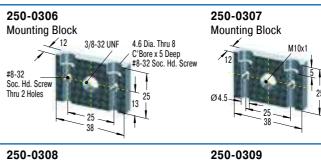
MC30M

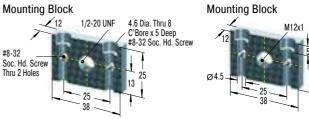


MC25

Issue 04.2018 - Specifications subject to change




Product available for UNF and metric thread (for metric add suffix -M from part number)


Product available for UNF and metric thread (for metric add suffix -M from part number)

MC10M

250-0308 Mounting Block

Additional acessories, mounting, installation ... starting on page 40.

Performance	ce									
	Max. Energ	y Capacity	Effectiv	e Weight						
TYPES	E ₃ Nm/cycle	E ₄ Nm/h	We min. kg	We max. kg	Return Force min. N	Return Force max. N	Return Time s	¹ Side Load Angle max.	М	Weight kg
MC5M-1-B	0.68	2,040	0.5	4.4	1	5	0.2	2	M5x0.5	0.003
MC5M-2-B	0.68	2,040	3.8	10.8	1	5	0.2	2	M5x0.5	0.003
MC5M-3-B	0.68	2,040	9.7	18.7	1	5	0.2	2	M5x0.5	0.003
MC9M-1-B	1.00	2,000	0.6	3.2	2	4	0.3	2	M6x0.5	0.004
MC9M-2-B	1.00	2,000	0.8	4.1	2	4	0.3	2	M6x0.5	0.004
MC10MH-B	1.25	4,000	0.7	5.0	2	4	0.3	3	M8x1	0.008
MC10ML-B	1.25	4,000	0.3	2.7	2	4	0.3	3	M8x1	0.008
MC30M-1	3.50	5,600	0.4	1.9	2	6	0.3	2	M8x1	0.010
MC30M-2	3.50	5,600	1.8	5.4	2	6	0.3	2	M8x1	0.010
MC30M-3	3.50	5,600	5.0	15.0	2	6	0.3	2	M8x1	0.010
MC25	2.80	22,600	1.8	5.4	3	6	0.3	2	3/8-32 UNF / M10x1	0.020
MC25H	2.80	22,600	4.6	13.6	3	6	0.3	2	3/8-32 UNF / M10x1	0.020
MC25L	2.80	22,600	0.7	2.2	3	6	0.3	2	3/8-32 UNF / M10x1	0.020
MC75-1	9.00	28,200	0.3	1.1	4	9	0.3	2	1/2-20 UNF / M12x1	0.040
MC75-2	9.00	28,200	0.9	4.8	4	9	0.3	2	1/2-20 UNF / M12x1	0.040
MC75-3	9.00	28,200	2.7	36.2	4	9	0.3	2	1/2-20 UNF / M12x1	0.040
MC75-4	9.00	28,200	25	72	4	9	0.3	2	1/2-20 UNF / M12x1	0.040

¹ For applications with higher side load angles consider using the side load adaptor, pages 44 to 49.

MC150 to MC600

Exceptionally high endurance and with the lowest resetting force

Self-Compensating, Rolling Diaphragm Technology Energy capacity 20 Nm/Cycle to 136 Nm/Cycle Stroke 12 mm to 25 mm

Tried-and-tested and durable: With a hermetically sealed rolling diaphragm in each absorber, the MC150 to MC600 product family is suitable for an exceptionally high lifetime of use with up to 25 million cycles. The rolling diaphragm technology perfected by ACE ensures complete separation of the damping fluid from the surrounding air. This makes it possible for direct installation in a pressure chamber to provide end stop damping in pneumatic cylinders up to approximately 7 bar (100 psi).

The rolling diaphragm delivers very low return forces for these maintenance-free, ready-toinstall absorbers. An integrated positive stop and progressive energy capacities, with a wide range of effective weight, make these miniature shock absorbers a winner. Furthermore, the use of a side load adapter allows impact angles of up to 25°. Stainless steel options are available for greater environmental compatibility. Self-compensating shock absorbers react to changing energy conditions, without adjustment.

These self compensating miniature shock absorbers are capable of universal mounting even inside a cylinder. These shocks are ideal for use in multitude of applications including material handling equipment, packaging equipment, medium robotics and machine tools.

Technical Data

Energy capacity: 20 Nm/Cycle to 136 Nm/Cycle

Impact velocity range: 0.06 m/s to 6 m/s. Other speeds on request.

Operating temperature range: 0 °C to 66 °C

Mounting: In any position

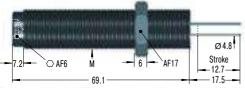
Positive stop: Integrated

Material: Outer body, Accessories: Steel corrosion-resistant coating; Main bearing: Plastic; Piston rod: Hardened stainless steel (1.4125, AISI 440C); Rolling diaphragm: EPDM Damping medium: Oil, temperature stable Application field: Linear slides, Pneumatic cylinders, Swivel units, Handling modules, Machines and plants, Finishing and processing centers, Measuring tables, Tool machines, Locking systems

Note: If precise end position data is required consider use of a stop collar.

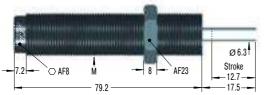
Safety information: External materials in the surrounding area can attack the rolling seal and lead to a shorter service life. Please contact ACE for appropriate solution suggestions. Suitable for use in pressure chambers up to7 bar.

On request: Increased corrosion protection. Special threads or other special options.



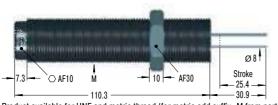
Products for UNF and metric thread available

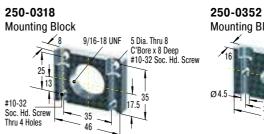
Miniature Shock Absorbers MC150 to MC600

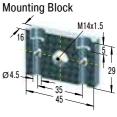


MC150

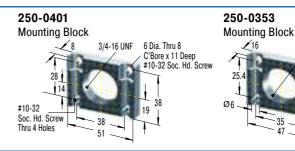
Product available for UNF and metric thread (for metric add suffix -M from part number) M14x1 also available to special order

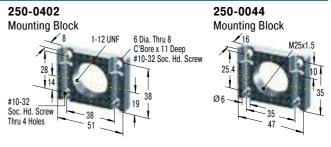

MC225


Product available for UNF and metric thread (for metric add suffix -M from part number)


MC600

Issue 04.2018 - Specifications subject to change


Product available for UNF and metric thread (for metric add suffix -M from part number) M27x3 also available to special order



35

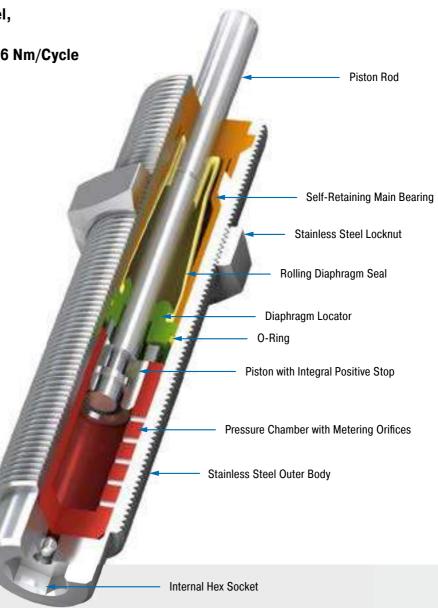
M20x1.5

Additional acessories, mounting, installation ... starting on page 40.

	Max. Energ	y Capacity	Effectiv	e Weight						
TYPES	E ₃ Nm/cycle	E₄ Nm/h	We min. kg	We max. kg	Return Force min. N	Return Force max. N	Return Time s	¹ Side Load Angle max.	М	Weight kg
MC150	20	34,000	0.9	10	3	8	0.4	4	9/16-18 UNF / M14x1.5	0.054
MC150H	20	34,000	8.6	86	3	8	0.4	4	9/16-18 UNF / M14x1.5	0.054
MC150H2	20	34,000	70	200	3	8	0.4	4	9/16-18 UNF / M14x1.5	0.054
MC150H3	20	34,000	181	408	3	8	1.0	4	9/16-18 UNF / M14x1.5	0.054
MC225	41	45,000	2.3	25	4	9	0.3	4	3/4-16 UNF / M20x1.5	0.154
MC225H	41	45,000	23	230	4	9	0.3	4	3/4-16 UNF / M20x1.5	0.154
MC225H2	41	45,000	180	910	4	9	0.3	4	3/4-16 UNF / M20x1.5	0.154
MC225H3	41	45,000	816	1,814	4	9	0.3	4	3/4-16 UNF / M20x1.5	0.154
MC600	136	68,000	9	136	5	10	0.6	2	1-12 UNF / M25x1.5	0.258
MC600H	136	68,000	113	1,130	5	10	0.6	2	1-12 UNF / M25x1.5	0.258
MC600H2	136	68,000	400	2,300	5	10	0.6	2	1-12 UNF / M25x1.5	0.258
MC600H3	136	68,000	2,177	4,536	5	10	0.6	2	1-12 UNF / M25x1.5	0.258

¹ For applications with higher side load angles consider using the side load adaptor, pages 44 to 49.

MC150-V4A to MC600-V4A


Exceptionally high endurance with stainless steel corrosion protection

Self-Compensating, Stainless Steel, Rolling Diaphragm Technology Energy capacity 20 Nm/Cycle to 136 Nm/Cycle Stroke 12 mm to 25 mm

Brilliant in every respect: These high performance stainless steel miniature shock absorbers are based on the MC150 to MC600 product family and its proven damping technology. This means that these special absorbers offer all of the benefits of the standard units such as the ACE rolling diaphragm technology which delivers maximum service life and direct installation in a pressure chamber with up to approx. 100 psi (7 bar).

Thanks to perfectly progressive maximum energy absorption and effective weight potential, their use is augmented even further by the stainless steel outer body and a complete range of stainless accessories (AISI 316L). Self-compensating shock absorbers react to changing energy conditions, without adjustment.

These self-compensating miniature stainless steel shock absorbers are used in medical and electrotechnology, as well as marine, packaging, and chemical applications. Shocks can be filled with food-grade oil for food processing applications.

Technical Data

Energy capacity: 20 Nm/Cycle to 136 Nm/Cycle

Impact velocity range: 0.06 m/s to 6 m/s. Other speeds on request.

Operating temperature range: 0 °C to 66 °C

Mounting: In any position

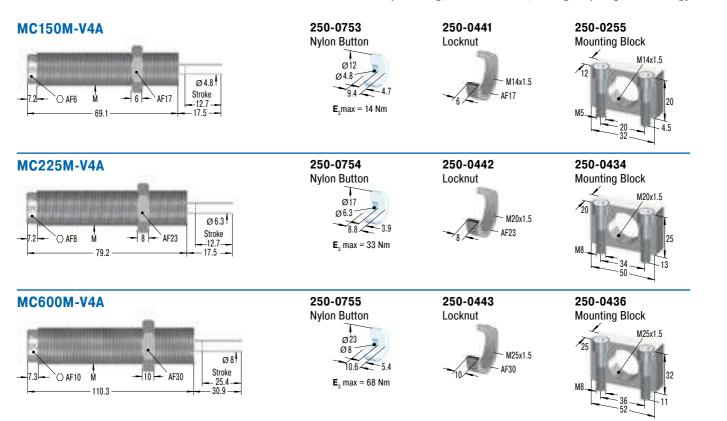
Positive stop: Integrated

Material: Outer body, Locknut, Accessories: Stainless steel (1.4404, AISI 316L); Main bearing: Plastic; Piston rod: Hardened stainless steel (1.4125, AISI 440C); Rolling diaphragm: EPDM

Damping medium: Oil, temperature stable

Application field: Clean room areas, Pharmaceutical industry, Medical technology, Food industry, Linear slides, Pneumatic cylinders, Handling modules, Machines and plants, Finishing and processing centers, Measuring tables

Note: If precise end position data is required consider use of a stop collar.


Safety information: External materials in the surrounding area can attack the rolling seal and lead to a shorter service life. Please contact ACE for appropriate solution suggestions. Suitable for use in pressure chambers up to 7 bar.

On request: Special oil with food approval. Special threads or other special options available on request.

Miniature Shock Absorbers MC150-V4A to MC600-V4A

Self-Compensating, Stainless Steel, Rolling Diaphragm Technology

Additional acessories, mounting, installation ... starting on page 40.

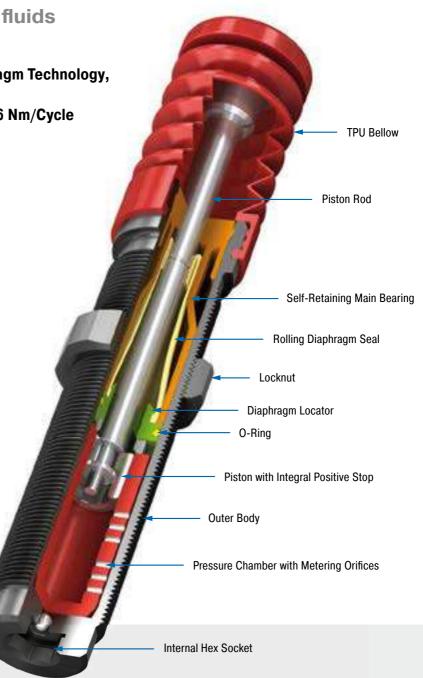
	Max. Energ	y Capacity	Effectiv	e Weight						
TYPES	E₃ Nm/cycle	E₄ Nm/h	We min. kg	We max. kg	Return Force min. N	Return Force max. N	Return Time s	¹ Side Load Angle max. °	М	Weight kg
MC150M-V4A	20	34,000	0.9	10	3	5	0.4	4	M14x1.5	0.054
MC150MH-V4A	20	34,000	8.6	86	3	5	0.4	4	M14x1.5	0.054
MC150MH2-V4A	20	34,000	70	200	3	5	0.4	4	M14x1.5	0.054
MC150MH3-V4A	20	34,000	181	408	3	5	1.0	4	M14x1.5	0.054
MC225M-V4A	41	45,000	2.3	25	4	6	0.3	4	M20x1.5	0.154
MC225MH-V4A	41	45,000	23	230	4	6	0.3	4	M20x1.5	0.154
MC225MH2-V4A	41	45,000	180	910	4	6	0.3	4	M20x1.5	0.154
MC225MH3-V4A	41	45,000	816	1,814	4	6	0.3	4	M20x1.5	0.154
MC600M-V4A	136	68,000	9	136	5	9	0.6	2	M25x1.5	0.258
MC600MH-V4A	136	68,000	113	1,130	5	9	0.6	2	M25x1.5	0.258
MC600MH2-V4A	136	68,000	400	2,300	5	9	0.6	2	M25x1.5	0.258
MC600MH3-V4A	136	68,000	2,177	4,536	5	9	0.6	2	M25x1.5	0.258

¹ For applications with higher side load angles please contact ACE.

Issue 04.2018 - Specifications subject to change

PMCN150 to PMCN600

Reliable protection from fluids and particulate


Self-Compensating, Rolling Diaphragm Technology, TPU Bellow Energy capacity 20 Nm/Cycle to 136 Nm/Cycle Stroke 12 mm to 25 mm

Hermetically sealed: The shock absorbers from the ACE Protection family PMCN have a compact, perfectly sealed cap as a special feature.

This protection bellows, made of TPU (thermoplastic polyurethane), safely encapsulates the proven ACE rolling diaphragm from the outside environment. Aggressive cutting, lubricating and cleaning agents don't stand a chance and the function of the maintenancefree, ready-to-install shock absorber is retained. They are also available in full stainless steel.

The PMCN range is a good alternative to the SP type air bleed collar if no compressed air is available on the machine or system.

Reliable protection against aggressive environments including fluids and abrasives, these self-compensating miniature shock absorbers are the first choice where conventional dampers wear out too quickly. Use them in harsh environments where cutting, cooling or cleaning agents can attack.

Technical Data

Energy capacity: 20 Nm/Cycle to 136 Nm/Cycle

Impact velocity range: 0.06 m/s to 6 m/s. Other speeds on request.

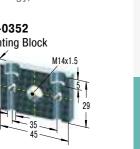
Operating temperature range: 0 °C to 66 °C

Mounting: In any position

Positive stop: Integrated

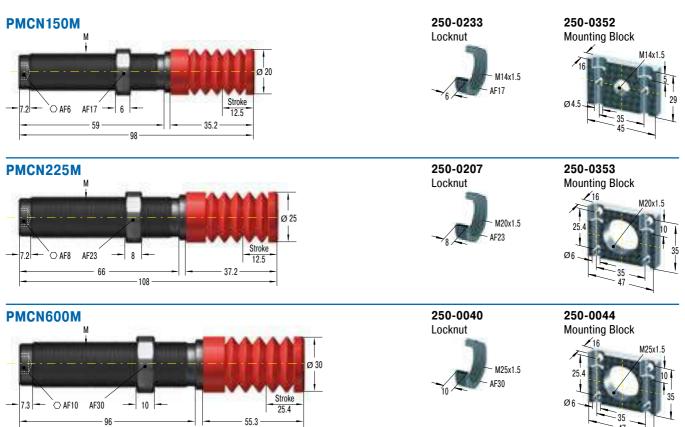
Material: Outer body: Steel corrosion-resistant coating; Main bearing: Plastic; Piston rod: Hardened stainless steel (1.4125, AISI 440C); Bellow: TPU, steel insert: Stainless steel (1.4404/1.4571, AISI 316L/316Ti); Rolling diaphragm: EPDM Damping medium: Oil, temperature stable

Application field: Finishing and processing centers, Clean room areas, Pharmaceutical industry, Medical technology, Food industry, Linear slides, Pneumatic cylinders, Machines and plants


Note: Final preliminary test must be done on the application.

Safety information: Do not paint the shock absorbers due to heat emission.

On request: Special accessories available on request.



157

25

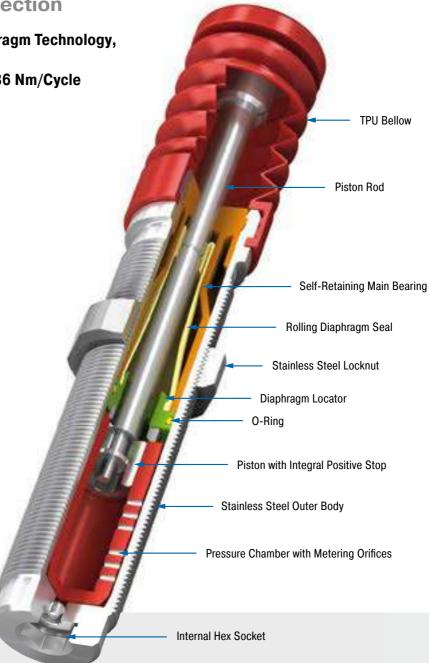
Self-Compensating, Rolling Diaphragm Technology, TPU Bellow

Additional acessories, mounting, installation ... starting on page 40.

Performance	•									
	Max. Energ	y Capacity	Effectiv	e Weight						
					Return Force	Return Force		Side Load Angle		
	E ₃	E4	We min.	We max.	min.	max.	Return Time	max.	М	Weight
TYPES	Nm/cycle	Nm/h	kg	kg	N	N	S	0		kg
PMCN150M	20	34,000	0.9	10	8	80	0.4	4	M14x1.5	0.067
PMCN150MH	20	34,000	8.6	86	8	80	0.4	4	M14x1.5	0.067
PMCN150MH2	20	34,000	70	200	8	80	0.4	4	M14x1.5	0.067
PMCN150MH3	20	34,000	181	408	8	80	1.0	4	M14x1.5	0.067
PMCN225M	41	45,000	2.3	25	8	85	0.3	4	M20x1.5	0.170
PMCN225MH	41	45,000	23	230	8	85	0.3	4	M20x1.5	0.170
PMCN225MH2	41	45,000	180	910	8	85	0.3	4	M20x1.5	0.170
PMCN225MH3	41	45,000	816	1,814	8	85	0.3	4	M20x1.5	0.170
PMCN600M	136	68,000	9	136	8	90	0.6	2	M25x1.5	0.317
PMCN600MH	136	68,000	113	1,130	8	90	0.6	2	M25x1.5	0.317
PMCN600MH2	136	68,000	400	1,043	8	90	0.6	2	M25x1.5	0.317
PMCN600MH3	136	68,000	2,177	4,536	8	90	0.6	2	M25x1.5	0.317

PMCN150-V4A to PMCN600-V4A

Optimum corrosion protection


Self-Compensating, Rolling Diaphragm Technology, TPU Bellow Energy capacity 20 Nm/Cycle to 136 Nm/Cycle Stroke 12 mm to 25 mm

Hermetically sealed and rustproof: The Protection product family PMCN is also available in a stainless steel design. This is of particular interest to the food and packaging industries.

Their main feature is the compact, totally sealed bellow between the body and the cap made of TPU (thermoplastic polyurethane). This protection safely encapsulates the ACE rolling diaphragm from the outside environment. Aggressive fluids don't stand a chance.

The PMCN range is an excellent alternative if the accessory option of the SP type air bleed collar cannot be used due to a lack of compressed air.

The PMCN range self-compensating miniature shock absorbers, produced from stainless steel, are primarily suitable for use in the food industry, but are also wherever a high-quality appearance is important e.g. in shipbuilding.

Technical Data

Energy capacity: 20 Nm/Cycle to 136 Nm/Cycle

Impact velocity range: 0.06 m/s to 6 m/s. Other speeds on request.

Operating temperature range: 0 °C to 66 °C

Mounting: In any position

Positive stop: Integrated

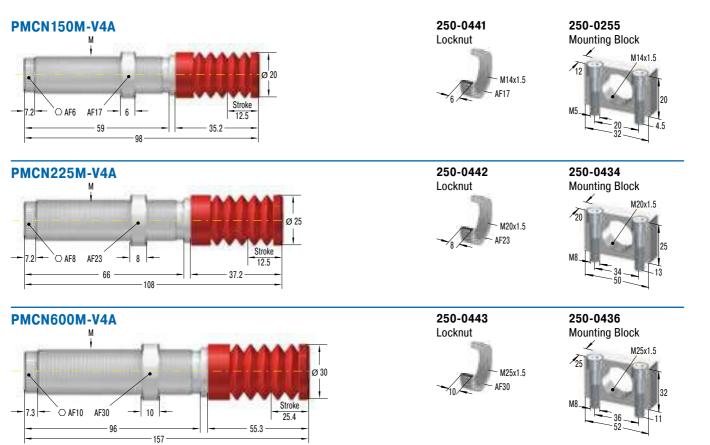
Material: Outer body: Stainless steel (1.4404, AISI 316L); Main bearing: Plastic; Piston rod: Hardened stainless steel (1.4125, AISI 440C); Bellow: TPU, steel insert: Stainless steel (1.4404/1.4571, AISI 316L/ 316Ti); Rolling diaphragm: EPDM

Damping medium: Oil, temperature stable

Application field: Finishing and processing centers, Clean room areas, Pharmaceutical industry, Medical technology, Food industry, Machines and plants

Note: Final preliminary test must be done on the application.

Safety information: Do not paint the shock absorbers due to heat emission.


On request: Special accessories available on request.

Miniature Shock Absorbers PMCN150-V4A to PMCN600-V4A

27

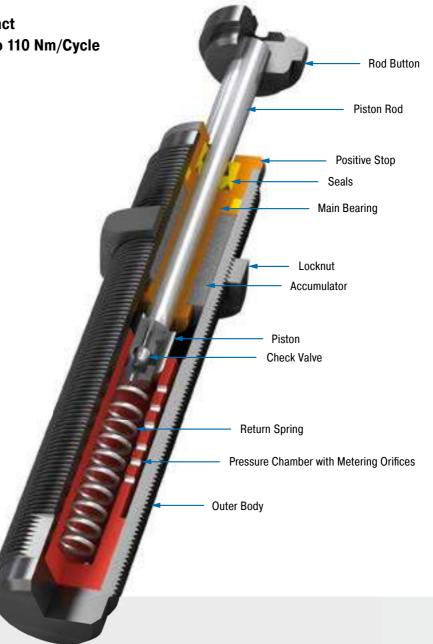
Self-Compensating, Rolling Diaphragm Technology, TPU Bellow

Additional acessories, mounting, installation ... starting on page 40.

Performance										
	Max. Energ	y Capacity	Effectiv	e Weight]					
					Return Force	Return Force		Side Load Angle		
TYPES	E ₃ Nm/cycle	E₄ Nm/h	We min. kg	We max. kg	min. N	max. N	Return Time s	°	М	Weight kg
PMCN150M-V4A	20	34,000	0.9	10	8	80	0.4	4	M14x1.5	0.067
PMCN150MH-V4A	20	34,000	8.6	86	8	80	0.4	4	M14x1.5	0.067
PMCN150MH2-V4A	20	34,000	70	200	8	80	0.4	4	M14x1.5	0.067
PMCN150MH3-V4A	20	34,000	181	408	8	80	1.0	4	M14x1.5	0.067
PMCN225M-V4A	41	45,000	2.3	25	8	85	0.3	4	M20x1.5	0.170
PMCN225MH-V4A	41	45,000	23.0	230	8	85	0.3	4	M20x1.5	0.170
PMCN225MH2-V4A	41	45,000	180.0	910	8	85	0.3	4	M20x1.5	0.170
PMCN225MH3-V4A	41	45,000	816.0	1,814	8	85	0.3	4	M20x1.5	0.170
PMCN600M-V4A	136	68,000	9.0	136	8	90	0.6	2	M25x1.5	0.317
PMCN600MH-V4A	136	68,000	113.0	1,130	8	90	0.6	2	M25x1.5	0.317
PMCN600MH2-V4A	136	68,000	400	2,300	8	90	0.6	2	M25x1.5	0.317
PMCN600MH3-V4A	136	68,000	2.177.0	4.536	8	90	0.6	2	M25x1.5	0.317

Products for UNF and metric thread available

SC190 to SC925


Long stroke and soft impact

Self-Compensating, Soft-Contact Energy capacity 25 Nm/Cycle to 110 Nm/Cycle Stroke 16 mm to 40 mm

Ideal for soft damping: the SC found in the model code from the ACE product family SC190 to SC925 stands for ,soft contact'. These miniature shock absorbers manufactured from one solid piece are designed in such a way that they can be setup with a linear or a progressive braking curve. The soft damping character is thanks to the special, long strokes which produce smooth deceleration and low reaction forces.

These maintenance-free, ready-to-install hydraulic machine elements are equipped with an integrated positive stop. The use of side load adapter allows impact angles of up to 25°. Thanks to the designed overlapping effective weight ranges, these dampers cover an effective load range of 1 kg to 2,000 kg! Self-compensating shock absorbers react to changing energy conditions, without adjustment.

These miniature self-compensating shock absorbers from the SC190 to SC925 product family are used in industrial, automation and machine engineering and primarily in the areas of handling and automation.

Technical Data

Energy capacity: 25 Nm/Cycle to 110 Nm/Cycle

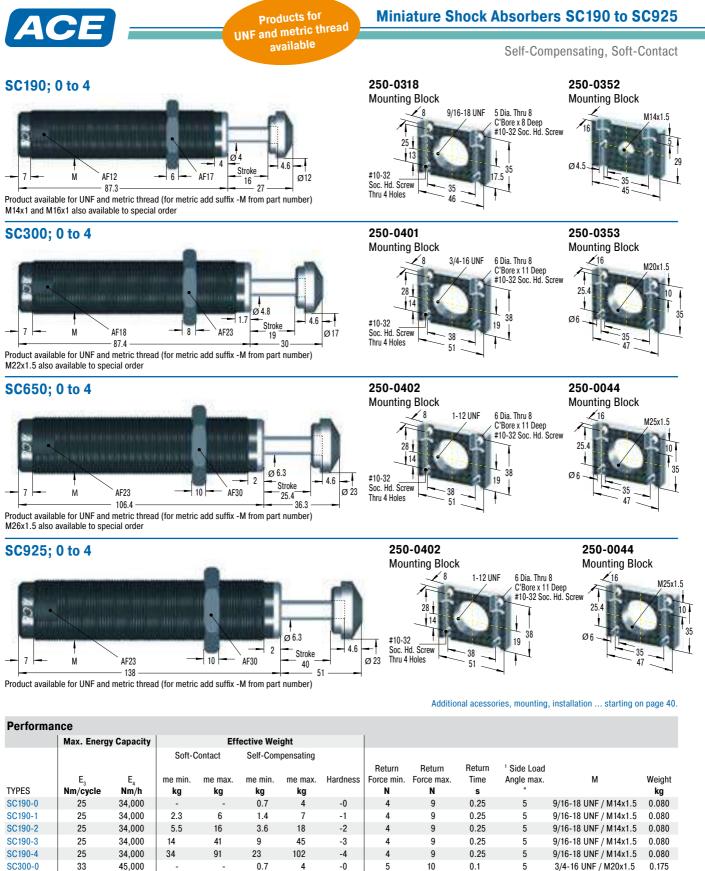
Impact velocity range: 0.15 m/s to 3.66 m/s. Other speeds on request.

Operating temperature range: 0 °C to 66 °C

Mounting: In any position

Positive stop: Integrated

Material: Outer body, Accessories: Steel corrosion-resistant coating; Piston rod: Hardened stainless steel


Damping medium: Oil, temperature stable

Application field: Linear slides, Pneumatic cylinders, Handling modules, Machines and plants, Finishing and processing centers, Measuring tables, Tool machines

Note: If precise end position data is required consider use of a stop collar.

Safety information: External materials in the surrounding area can attack the seal components and lead to a shorter service life. Please contact ACE for appropriate solution suggestions. Do not paint the shock absorbers due to heat emission.

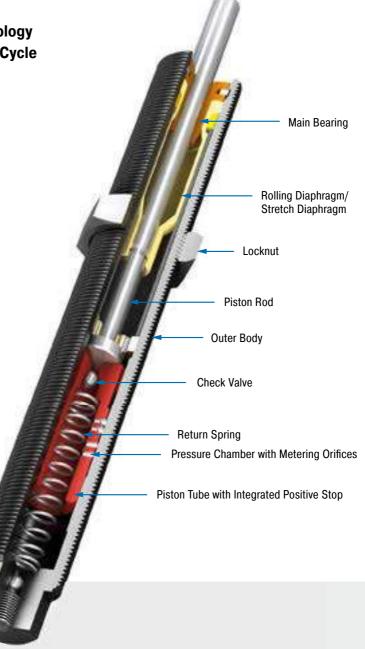
On request: Nickel-plated or weartec finish (seawater resistant) or other special finishes available to special order. Models without rod end button.

		,		• •					-		-	•, •• •• •• • • • • • • • • • • • • • •		
SC300-0	33	45,000	-	-	0.7	4	-0	5	10	0.1	5	3/4-16 UNF / M20x1.5	0.175	
SC300-1	33	45,000	2.3	7	1.4	8	-1	5	10	0.1	5	3/4-16 UNF / M20x1.5	0.175	
SC300-2	33	45,000	7	23	4.5	27	-2	5	10	0.1	5	3/4-16 UNF / M20x1.5	0.175	
SC300-3	33	45,000	23	68	14	82	-3	5	10	0.1	5	3/4-16 UNF / M20x1.5	0.175	
SC300-4	33	45,000	68	181	32	204	-4	5	10	0.1	5	3/4-16 UNF / M20x1.5	0.175	
SC650-0	73	68,000	-	-	2.3	14	-0	11	32	0.20	5	1-12 UNF / M25x1.5	0.335	
SC650-1	73	68,000	11	36	8	45	-1	11	32	0.20	5	1-12 UNF / M25x1.5	0.335	
SC650-2	73	68,000	34	113	23	136	-2	11	32	0.20	5	1-12 UNF / M25x1.5	0.335	
SC650-3	73	68,000	109	363	68	408	-3	11	32	0.20	5	1-12 UNF / M25x1.5	0.335	
SC650-4	73	68,000	363	1,089	204	1,180	-4	11	32	0.20	5	1-12 UNF / M25x1.5	0.335	
SC925-0	110	90,000	8	25	4.5	29	-0	11	32	0.40	5	1-12 UNF / M25x1.5	0.420	
SC925-1	110	90,000	22	72	14	90	-1	11	32	0.40	5	1-12 UNF / M25x1.5	0.420	
SC925-2	110	90,000	59	208	40	227	-2	11	32	0.40	5	1-12 UNF / M25x1.5	0.420	
SC925-3	110	90,000	181	612	113	726	-3	11	32	0.40	5	1-12 UNF / M25x1.5	0.420	
SC925-4	110	90,000	544	1,952	340	2,088	-4	11	32	0.40	5	1-12 UNF / M25x1.5	0.420	
¹ For application	ons with highe	er side load an	ales consi	ider using the	e side load a	adaptor pag	nes 44 to 49							

¹ For applications with higher side load angles consider using the side load adaptor, pages 44 to 49.

Issue 04.2018 - Specifications subject to change

SC²25 to SC²190


Piston tube design for maximum energy absorption

Self-Compensating, Piston Tube Technology Energy capacity 10 Nm/Cycle to 31 Nm/Cycle Stroke 8 mm to 12 mm

Soft damping, but enormous capacity: The range of ,soft contact' absorbers SC²25 to SC²190 extends from thread size M10 to M14 and covers effective weight ranges of 1 kg to 1,550 kg (2.2 to 3,400 lbs). All models are characterised by high energy absorption and they also unite the piston tube technology with the diaphragm seal perfected by ACE. This enables direct installation as end position damping in pneumatic cylinders at 5 to 7 bar (72 to 102 psi) or applications where deceleration needs to take place close to the pivot point.

They are maintenance-free, have an integrated positive stop and are mountable in any position. The option of a side load adapter allows impact angles of up to 25°. They offer soft contact deceleration where initial impact reaction forces are very low, with the advantages of self-compensation to react to changing energy conditions, without adjustment.

Thanks to their robust design and their durability, these miniature shock absorbers can be used for a wide range of applications. Designers mainly use them for pick and place systems, pneumatic rotary modules and in automation applications.

Technical Data

Energy capacity: 10 Nm/Cycle to 31 Nm/Cycle

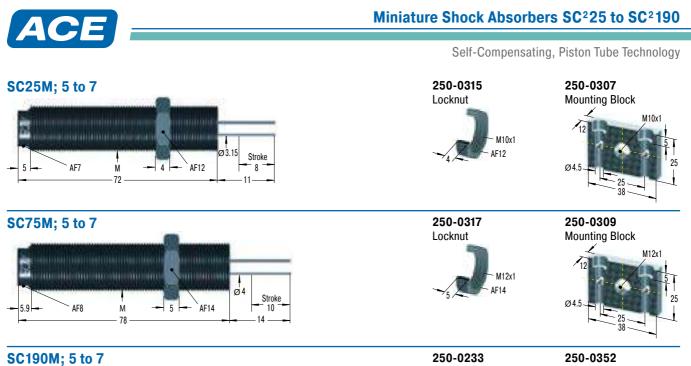
Impact velocity range: 0.1 m/s to 5.7 m/s. Other speeds on request.

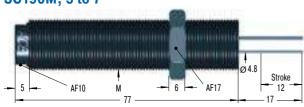
Operating temperature range: 0 °C to 66 °C

Mounting: In any position

Positive stop: Integrated

Material: Outer body, Accessories: Steel corrosion-resistant coating; Piston rod: Hardened stainless steel; Rolling diaphragm: SC²190: EPDM; Stretch diaphragm: SC²25 and SC²75: Nitrile


Damping medium: Oil, temperature stable


Application field: Linear slides, Pneumatic cylinders, Swivel units, Handling modules, Machines and plants, Finishing and processing centers, Measuring tables, Tool machines, Locking systems

Note: If precise end position data is required consider use of a stop collar.

Safety information: External materials in the surrounding area can attack the rolling and stretch seals and lead to a shorter service life. Please contact ACE for appropriate solution suggestions.

On request: Increased corrosion protection. Special finishes.

M14x1 also available to special order

Additional acessories, mounting, installation ... starting on page 40.

Ø4.

M14x1.5

Mounting Block

M14x1.5

Locknut

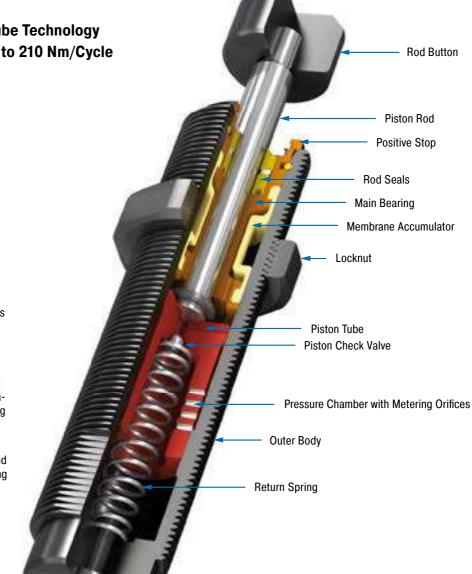
Performanc	e										
	Max. Energ	y Capacity	E	ffective Weig	ght						
						Return Force	Return Force		1 Side Load		
TYPES	E ₃ Nm/cycle	E₄ Nm/h	We min. kg	We max. kg	Hardness	min. N	max. N	Return Time s	Angle max.	М	Weight kg
SC25M-5	10	16,000	1	5	-5	4.5	14	0.3	2	M10x1	0.029
SC25M-6	10	16,000	4	44	-6	4.5	14	0.3	2	M10x1	0.029
SC25M-7	10	16,000	42	500	-7	4.5	14	0.3	2	M10x1	0.029
SC75M-5	16	30,000	1	8	-5	6	19	0.3	2	M12x1	0.047
SC75M-6	16	30,000	7	78	-6	6	19	0.3	2	M12x1	0.047
SC75M-7	16	30,000	75	800	-7	6	19	0.3	2	M12x1	0.047
SC190M-5	31	50,000	2	16	-5	6	19	0.4	2	M14x1.5	0.059
SC190M-6	31	50,000	13	140	-6	6	19	0.4	2	M14x1.5	0.059
SC190M-7	31	50,000	136	1,550	-7	6	19	0.4	2	M14x1.5	0.059

¹ For applications with higher side load angles consider using the side load adaptor, pages 44 to 49.

ACE Controls Inc. • 23425 Industrial Park Dr. Farmington • US-48335 Michigan • T +1 800-521-3320 • F +1 248-476-2470 • shocks@acecontrols.com • www.acecontrols.com

Products for UNF and metric thread available

SC²300 to SC²650


Piston tube design for maximum energy absorption

Self-Compensating, Piston Tube Technology Energy capacity 73 Nm/Cycle to 210 Nm/Cycle Stroke 15 mm to 23 mm

Added safety with accumulator technology: The larger ,soft contact' models from the SC²300 to SC²650 are available with up to three times the energy absorption compared to similar sizes of standard shock absorbers SC190 to SC925, due to the ACE piston tube specialty. Furthermore, the membrane accumulator serves as a compensation element for the oil displaced in the shock absorber and replaces the standard use of absorber materials. This increases process safety even further.

The shock absorbers, which are perfect for rotary actuators for example, are available in progressively stepped effective weight ranges with an integrated positive stop. They are maintenance-free and ready for direct installation. The side load adapter option allows impact angles of up to 25°. They offer soft contact deceleration where initial impact reaction forces are very low, with the advantages of self-compensation to react to changing energy conditions, without adjustment.

These miniature shock absorbers offer high performance levels with a long service life and are particularly popular for handling, mounting very close to pivots and automation tasks.

Technical Data

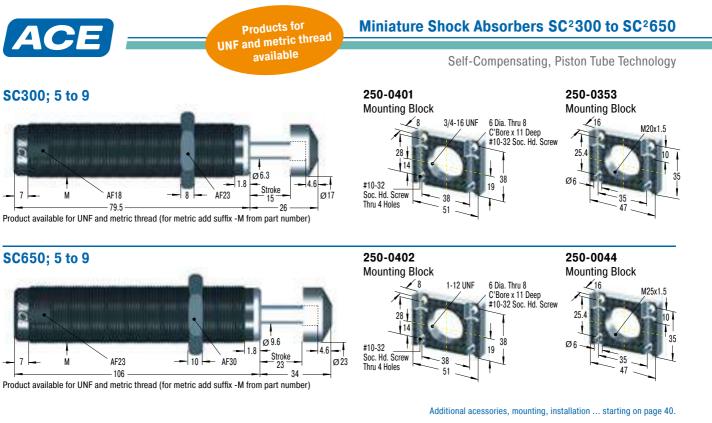
Energy capacity: 73 Nm/Cycle to 210 Nm/Cycle

Impact velocity range: 0.09 m/s to 3.66 m/s. Other speeds on request.

Operating temperature range: 0 °C to 66 °C

Mounting: In any position

Positive stop: Integrated


Material: Outer body: Steel corrosion-resistant coating; Piston rod: Hardened stainless steel; Accessories: Hardened steel and corrosion-resistant coating

Damping medium: Oil, temperature stable

Application field: Turntables, Swivel units, Robot arms, Linear slides, Pneumatic cylinders, Handling modules, Machines and plants, Finishing and processing centers, Tool machines

Note: If precise end position data is required consider use of a stop collar.

On request: Increased corrosion protection. Special finishes.

Performa	nce										
	Max. Energ	y Capacity	Et	ffective Weig	jht						
						Return Force	Return Force	Return	¹ Side Load		
	E3	E4	We min.	We max.	Hardness	min.	max.	Time	Angle max.	М	Weight
TYPES	Nm/cycle	Nm/h	kg	kg		N	N	S	٥		kg
SC300-5	73	45,000	11	45	-5	8	18	0.2	5	3/4-16 UNF / M20x1.5	0.150
SC300-6	73	45,000	34	136	-6	8	18	0.2	5	3/4-16 UNF / M20x1.5	0.150
SC300-7	73	45,000	91	181	-7	8	18	0.2	5	3/4-16 UNF / M20x1.5	0.150
SC300-8	73	45,000	135	680	-8	8	18	0.2	5	3/4-16 UNF / M20x1.5	0.150
SC300-9	73	45,000	320	1,950	-9	8	18	0.2	5	3/4-16 UNF / M20x1.5	0.150
SC650-5	210	68,000	23	113	-5	11	33	0.3	5	1-12 UNF / M25x1.5	0.310
SC650-6	210	68,000	90	360	-6	11	33	0.3	5	1-12 UNF / M25x1.5	0.310
SC650-7	210	68,000	320	1,090	-7	11	33	0.3	5	1-12 UNF / M25x1.5	0.310
SC650-8	210	68,000	770	2,630	-8	11	33	0.3	5	1-12 UNF / M25x1.5	0.310
SC650-9	210	68,000	1,800	6,350	-9	11	33	0.3	5	1-12 UNF / M25x1.5	0.310

¹ For applications with higher side load angles consider using the side load adaptor, pages 44 to 49.

SC25-HC to SC650-HC

Miniature self compensating shocks for high-speed applications

Self-Compensating Energy capacity 2.25 Nm/Cycle to 136 Nm/Cycle Stroke 4 mm to 15 mm

ACE Controls SC25-HC to SC650-HC High-Cycle shock absorbers are engineered for high-speed equipment applications. These rugged performers are ideal for the packaging industry. They offer a short stroke, quick time through stroke and quick rod-ready time. In addition, these dependable self-compensating miniatures are capable of rapid repeat strokes. The result is faster cycling for your equipment and gains in production time for you.

Self-compensating shock absorbers react to changing energy conditions, without adjustment.

These miniature, self-compensating shock absorbers provide high-speed performance and reliability in a compact footprint. Applications include: Packaging equipment, slides, rotary actuators, small and medium robotics, machine tools, pick and place operations and more.

Rod Button Piston Rod **Positive Stop** Rod Seals Main Bearing Membrane Accumulator Piston Locknut Piston Tube Pressure Chamber with Metering Orifices **Outer Body Return Spring**

Technical Data

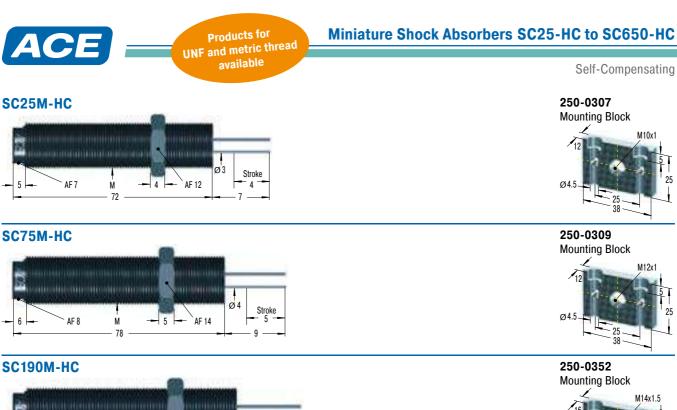
Energy capacity: 2.25 Nm/Cycle to 136 Nm/ Cycle

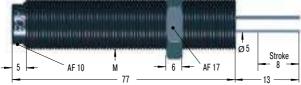
Impact velocity range: 0.03 m/s to 4.5 m/s. Operating temperature range: 0 °C to 66 °C

Mounting: In any position

Positive stop: Integrated

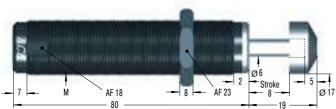
Material: Outer body: Steel corrosion-resistant coating; Main bearing: Brass; Piston rod: Steel hardened; Locknut, Accessories: Steel; Rolling diaphragm: Rubber (EPDM); Stretch diaphragm: Rubber (nitrile)


Damping medium: SF 96-500 and others

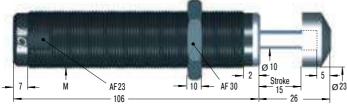

Application field: Linear slides, Tool machines, Handling modules, Production plants

Note: If precise end position is required, consider use of the optional stop collar.

Safety information: External materials in the surrounding area can attack the accumulator and lead to a shorter service life. Please contact ACE for appropriate solution suggestions. Suitable for use in pressure chambers up to 102 psi.


On request: Food grade oils, special threads available on request.

M14x1 also available to special order


SC300-HC

Product available for UNF and metric thread (for metric add suffix -M from part number)

SC650-HC

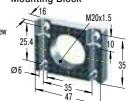
Issue 04.2018 - Specifications subject to change

Product available for UNF and metric thread (for metric add suffix -M from part number)

250-0401 Mounting Block 6 Dia. Thru 8 C'Bore x 11 Deep 3/4-16 UNF 18 #10-32 Soc. Hd. Screw

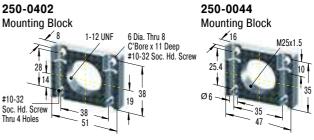
38

51


#10-32

Soc. Hd. Screw

Thru 4 Holes


250-0353 Mounting Block

Ø4

25

M14x1.5

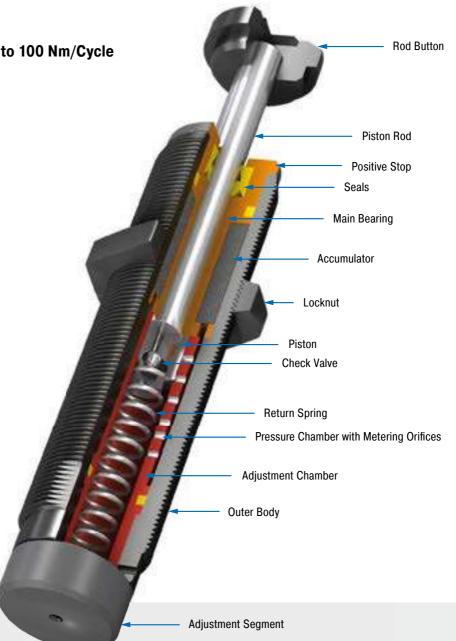
Additional acessories, mounting, installation ... starting on page 40.

Performance										
	Max. Ene	rgy Capacity	Effecti	ve Weight						
TYPES	E ₃ Nm/cycle	Energy capacity Nm/h	We min. kg	We max. kg	Return Force min. N	Return Force max. N	Return Time s	¹ Side Load Angle max.	М	Weight kg
SC25M-5-HC	2.25	16,000	1	5	9	14	0.3	2	M10x1	0.030
SC25M-6-HC	2.25	16,000	4	44	9	14	0.3	2	M10x1	0.030
SC25M-7-HC	2.25	16,000	42	500	9	14	0.3	2	M10x1	0.030
SC75M-5-HC	8.5	30,000	1	8	8.5	15	0.3	2	M12x1	0.045
SC75M-6-HC	8.5	30,000	7	124	8.5	15	0.3	2	M12x1	0.045
SC75M-7-HC	8.5	30,000	75	800	8.5	15	0.3	2	M12x1	0.045
SC190M-5-HC	20	50,000	2	16	12	25	0.4	2	M14x1.5	0.059
SC190M-6-HC	20	50,000	13	140	12	25	0.4	2	M14x1.5	0.059
SC190M-7-HC	20	50,000	136	1,540	12	25	0.4	2	M14x1.5	0.059
SC300-5-HC	73	45,000	11	45	12	17	0.2	5	3/4-16 UNF / M20x1.5	0.164
SC300-6-HC	73	45,000	34	136	12	17	0.2	5	3/4-16 UNF / M20x1.5	0.164
SC300-7-HC	73	45,000	91	181	12	17	0.2	5	3/4-16 UNF / M20x1.5	0.164
SC300-8-HC	73	45,000	135	680	12	17	0.2	5	3/4-16 UNF / M20x1.5	0.164
SC300-9-HC	73	45,000	318	885	12	17	0.2	5	3/4-16 UNF / M20x1.5	0.164
SC650-5-HC	136	68,000	23	113	22	37	0.3	5	1-12 UNF / M25x1.5	0.315
SC650-6-HC	136	68,000	91	363	22	37	0.3	5	1-12 UNF / M25x1.5	0.315
SC650-7-HC	136	68,000	318	1,090	22	37	0.3	5	1-12 UNF / M25x1.5	0.315
SC650-8-HC	136	68,000	770	2,630	22	37	0.3	5	1-12 UNF / M25x1.5	0.315
SC650-9-HC	136	68,000	1,800	6,350	22	37	0.3	5	1-12 UNF / M25x1.5	0.315

Products for UNF and metric thread available

MA30 to MA900

Stepless adjustment


Adjustable

Energy capacity 3.5 Nm/Cycle to 100 Nm/Cycle Stroke 8 mm to 40 mm

The miniature shock absorbers from the MA30 to MA900 product family can be adjusted and precisely adapted to your requirements. For example, the MA150 displays the rolling diaphragm technology from the MC150 to MC600 family and offers all of the advantages of this technology, such as use in pressure chambers. Thanks to long strokes (including 40 mm on the MA900) lower reaction forces result, which provide a soft damping characteristic.

All variations of these units are maintenancefree, ready-to-install machine elements and have an integrated positive stop. They provide the best service where application data changes, where the calculation parameters are not clear or where maximum flexibility in the possible usage is required.

These adjustable miniature shock absorbers from ACE can be used to precisely meet the customer's application needs and are therefore found everywhere in industrial, automation and machine engineering and many other applications.

Technical Data

Energy capacity: 3.5 Nm/Cycle to 100 Nm/Cycle

Impact velocity range: 0.15 m/s to 4.5 m/s. Other speeds on request.

Operating temperature range: 0 $^\circ\text{C}$ to 66 $^\circ\text{C}$

Mounting: In any position

Positive stop: Integrated

Adjustment: Hard impact at the start of stroke, adjust the ring towards 9 or PLUS. Hard impact at the end of stroke, adjust the ring towards 0 or MINUS.

Material: Outer body, Accessories: Steel corrosion-resistant coating; Piston rod: Hardened stainless steel

Damping medium: Oil, temperature stable

Application field: Linear slides, Pneumatic cylinders, Swivel units, Handling modules, Machines and plants, Finishing and processing centers, Automatic machinery, Tool machines, Locking systems

Note: If precise end position data is required consider use of a stop collar. Shock absorber is preset at delivery in a neutral position between hard and soft.

Safety information: External materials in the surrounding area can attack the seal components and lead to a shorter service life. Please contact ACE for appropriate solution suggestions. Do not paint the shock absorbers due to heat emission.

On request: Nickel-plated or other special options available to special order. Models without rod end button.

Miniature Shock Absorbers MA30 to MA900

4.6 Dia. Thru 8 ⁄ C'Bore x 5 Deep

25

5 Dia. Thru 8

35

6 Dia. Thru 8

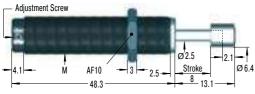
38

19

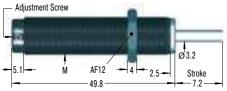
C'Bore x 11 Deep #10-32 Soc. Hd. Screw

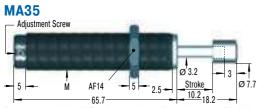
7 5

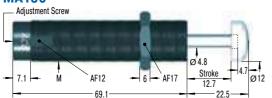
C'Bore x 8 Deep #10-32 Soc. Hd. Screw

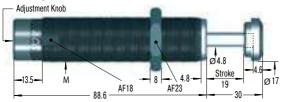

13

#8-32 Soc. Hd. Screv


Adjustable

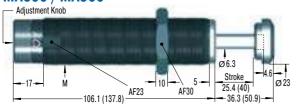

M10x


MA50M


Product available for UNF and metric thread (for metric add suffix -M from part number)

MA150

Product available for UNF and metric thread (for metric add suffix -M from part number) M14x1 also available to special order


MA225

Product available for UNF and metric thread (for metric add suffix -M from part number)

MA600 / MA900

Deufeuneene

Product available for UNF and metric thread (for metric add suffix -M from part number) Dimensions for MA900M in ().

	Max. Energ	Max. Energy Capacity		Effective Weight						
TYPES	E ₃ Nm/cycle	E ₄ Nm/h	We min. kg	We max. kg	Return Force min. N	Return Force max. N	Return Time s	¹ Side Load Angle max.	М	Weight kg
MA30M	3.5	5,650	0.23	15	1.7	5.3	0.3	2	M8x1	0.013
MA50M	5.5	13,550	4.5	20	3	6	0.3	2	M10x1	0.025
MA35	4	6,000	6	57	5	11	0.2	2	1/2-20 UNF / M12x1	0.043
MA150	22	35,000	1	109	3	5	0.4	2	9/16-18 UNF / M14x1.5	0.061
MA225	25	45,000	2.30	226	5	10	0.4	2	3/4-16 UNF / M20x1.5	0.173
MA600	68	68,000	9	1,360	10	30	0.2	2	1-12 UNF / M25x1.5	0.352
/A900	100	90,000	14	2,040	10	35	0.4	1	1-12 UNF / M25x1.5	0.414

250-0308

#8-32

Soc. Hd. Screw

250-0318

#10-32

#10-32

Soc. Hd. Screw

250-0402

#10-32 Soc. Hd. Screw

Thru 4 Holes

/ 8

Thru 4 Holes

Soc. Hd. Screw

250-0401 Mounting Block

Thru 4 Holes

Mounting Block

1 8

Thru 2 Holes

Mounting Block

12

1/2-20 UNF

25 38

35

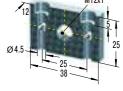
46

38

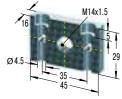
51

3/4-16 UNF

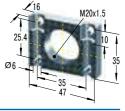
9/16-18 UNF


¹ For applications with higher side load angles consider using the side load adaptor, pages 44 to 49.

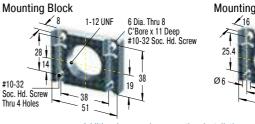
37


Ø4. 38 250-0309 Mounting Block 1 M12x1 12

250-0307


Mounting Block

250-0352 Mounting Block


250-0353 Mounting Block

47

M25x1.5

250-0044 Mounting Block

ACE Controls Inc. + 23425 Industrial Park Dr. Farmington + US-48335 Michigan + T +1 800-521-3320 + F +1 248-476-2470 + shocks@acecontrols.com + www.acecontrols.com

3/8x1

Miniature adjustable shock delivers convenience

Adjustable

Energy capacity 68 Nm/Cycle Stroke 25 mm

ACE Controls 3/8x1" (9.53 mm x 25 mm) bore adjustable miniature shock absorber offers high energy capacity and a wide effective weight range for handling a variety of applications. A unique feature of the multiorifice 3/8x1" bore is the optional rear slot adjuster. Adjustment can be made by turning the front adjuster to the preferred setting, or by turning the rear slot adjuster if desired.

Available with side or rear adjustment, these 1" bore shock absorbers provide performance and convenience in one reliable package. Applications include: Slides, material handling equipment, robotics, machine tools, pick and place systems, packaging equipment and more.

Rod Button **Return Spring** Positive Stop Front Adjustment Segment **Rod Seals** Main Bearing Accumulator Piston Rod Locknut Piston Outer Body Pressure and Adjustment Chamber with Metering Orifices

Optional Rear Adjuster

Technical Data

Energy capacity: 68 Nm/Cycle Impact velocity range: 0.5 m/s to 4.6 m/s Operating temperature range: -12 °C to 66 °C

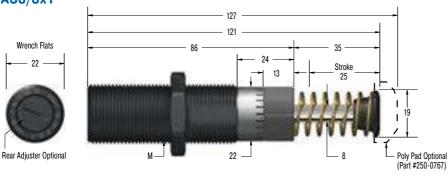
Mounting: In any position. Clevis mounting available (NA 3/8x1)

Adjustment: Adjustment can be made by turning the front adjuster to the preferred setting, or by turning the rear slot adjuster if desired.

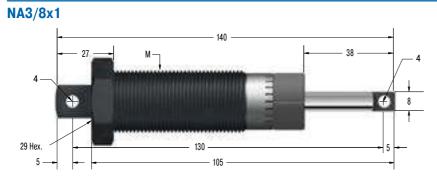
Material: Outer body, Accessories: Steel corrosion-resistant coating; Main bearing, Rod end button: Steel hardened; Piston rod: Steel hardened and chrome plated; Return spring: Steel; Locknut: Zinc plated steel

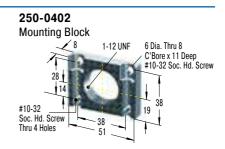
Damping medium: American 46

Application field: Linear slides, Transport industry, Tool machines, Handling modules, Production plants


Note: Maximum side load depends on application. For additional information contact ACE Controls' Applications Department. Lock nut included with each shock absorber. **Safety information:** External materials in the surrounding area can attack the seal components and lead to a shorter service life. Please contact ACE for appropriate solution suggestions. Do not paint the shock absorbers due to heat emission.

On request: Increased corrosion protection. Special finishes. Models without rod end button also available on request.




Adjustable

Additional acessories, mounting, installation ... starting on page 40.

Performanc	e									
	Max. Energy Capacity		Effective Weight							
TYPES	E ₃ Nm/cycle	Energy capacity Nm/h	We min. kg	We max. kg	Return Force min. N	Return Force max. N	Return Time s	¹ Side Load Angle max.	М	Weight kg
AS3/8X1	68	68,000	4.54	567	27	49	0.03	5	1-12 UNF	0.198
NA3/8x1	68	68,000	4.54	577	30	49	0.13	5	N/A	0.198
	1				1		0.10	5	1.7	0.100

 $^{\scriptscriptstyle 1}$ For applications with higher side load angles consider using the side load adaptor, pages 44 to 49.

Miniature Shock Ab	osorber Accessori	es M5 to M25		
election Chart				
	J		Kap	J.
Shock Absorber Type	¹ Locknut	² Stop Collar	Mounting Block	³ Side Load Adapt
Thread M5x0.5				
MC5M	0801-001	-	-	-
Thread M6x0.5				
MC9M	250-0716	-	-	-
Thread M8x1				
MA30M	250-0482	-	-	250-0146
MC10M MC30M	250-0482 250-0482	-	-	250-0141 250-0146
Thread M10x1 MA50M	250-0315	250-0408	250-0307	250-0562
MC25M	250-0315	250-0408	250-0307	250-0562
SC25M; 5 to 7	250-0315	250-0408	250-0307	-
SC25M-HC	250-0315	250-0408	250-0307	-
Thread M12x1				
MA35M	250-0317	250-0409	250-0309	250-0760
MC75M SC75M; 5 to 7	250-0317 250-0317	250-0409 250-0409	250-0309 250-0309	250-0760 250-0145
SC75M-HC	250-0317	250-0409	250-0309	-
Thread M14x1.5 MA150M	250-0233	250-0272	250-0352	250-0558
MC150M	250-0233	250-0272	250-0352	250-0558
MC150M-V4A	250-0441	250-0243	250-0255	-
PMCN150M	250-0233 250-0441	-	250-0352 250-0255	-
PMCN150M-V4A SC190M; 0 to 4	250-0441	250-0272	250-0255	- 250-0080
SC190M; 5 to 7	250-0233	250-0272	250-0352	250-0558
SC190M-HC	250-0233	250-0272	250-0352	-
Thread M20x1.5				
MA225M	250-0207	250-0410	250-0353	250-0081
MC225M MC225M-V4A	250-0207 250-0442	250-0410 250-0253	250-0353 250-0434	250-0559
PMCN225M	250-0442	250-0253	250-0434 250-0353	-
PMCN225M-V4A	250-0442	-	250-0434	-
SC300M; 0 to 4	250-0207	250-0410	250-0353	250-0081
SC300M; 5 to 9 SC300M-HC	250-0207 250-0207	250-0410 250-0410	250-0353 250-0353	-
Thread M25x1.5		050 0700	050 0074	
AS3/8x1M MA600M	250-0040 250-0040	250-0766 250-0276	250-0044 250-0044	- 250-0082
MA900M	250-0040	250-0276	250-0044	250-0082
MC600M	250-0040	250-0276	250-0044	250-0560
MC600M-V4A	250-0443	250-0254	250-0436	-
PMCN600M PMCN600M-V4A	250-0040 250-0443	-	250-0044 250-0436	-
SC650M; 0 to 4	250-0040	250-0276	250-0044	250-0082
SC650M; 5 to 9	250-0040 250-0040	250-0276 250-0276	250-0044	-
SC650M-HC			250-0044	_

¹ Additional special options: Locknut 250-0362 for the MC10ME (extra fine thread), locknut 250-0232 for the MA/MC150E (extra fine thread), locknut 250-0239 for the MC600ML (extra fine thread).

² Additional special options: Stop Collar 250-0263 for the MC600ML (extra fine thread).

³ Only mountable on units without button. Remove the button from the shock absorber, if there's one fitted! The following side load adaptors fit -880 model shock absorbers: 250 -0080, -0081, -0082, -0141, -0145, -0562, -0760, -0762 and -0763.

Dimensions can be found on the corresponding accessories pages.

Selection Chart

	1	in the second
31		
U RC		
1.0		

Steel Shroud	Steel Button	Steel/Urethane Button	Nylon Button	Page
Thread M5x0.5				44
_	-	-	-	44
Thread M6x0.5				
-	-	-	-	44
Thread M8x1		050.0704		
250-0832 250-0833	-	250-0764	-	44 44
250-0832	_	250-0764	-	44
Thread M10x1				
250-0834	250-0124	-	-	44
250-0834	250-0124	250-0094	-	44
250-0835	250-0175	-	-	44
250-0835	250-0175	-	-	44
Thread M12x1				
250-0836	250-0786	250-0094	_	45
250-0836	250-0786	250-0094	-	45
250-0837	250-0174	-	-	45
250-0837	250-0174	-	-	45
Thread M14v1 F				
Thread M14x1.5 250-0733	250-0111	250-0095	-	45
250-0733	250-0111	250-0095	250-0753	45
_	-	_	250-0753	45
-	-	-	_	45
-	_	-	_	45
250-0785	included	250-0096	-	45
250-0733	250-0111	250-0095	-	45
250-0733	250-0111	250-0095	-	45
Thread M20x1.5				
250-0734	included	250-0098	_	46
250-0170	250-0112	250-0097	250-0754	46
_	_	_	250-0754	46
-	-	-	-	46
_	-	-	-	46
250-0734	included	250-0098	-	46
250-0734	included	250-0105	-	46
250-0734	included	250-0105	-	46
Thread M25x1.5				
_	_	250-0099	-	47
250-0765	included	250-0100	-	47
250-0765	included	250-0100	-	47
250-0171	10721-000	250-0099	250-0755	47
-	-	-	250-0755	47
-	-	-	-	47
-	— included		-	47
250-0765 250-0171	included	250-0100	-	47 47
250-0171	included included	250-0099 250-0099	-	47
-	included	250-0100	-	47
		200 0100		

Miniature Shock Ab				
Selection Chart				
	J			
Shock Absorber Type	Locknut	Stop Collar	Mounting Block	¹ Side Load Adaptor
Thread 3/8-32 UNF MC25	250-0404	250-0406	250-0306	
MIC25	250-0404	250-0406	250-0300	-
Thread 1/2-20 UNF				
MA35	250-0405	250-0407	250-0308	_
MC75	250-0405	250-0407	250-0308	250-0762
Thread 9/16-18 UNF				
MA150	250-0231	250-0271	250-0318	250-0554
MC150	250-0231	250-0271	250-0318	250-0554
SC190; 0 to 4	250-0231	250-0271	250-0318	-
Thread 3/4-16 UNF				
MA225	250-0399	250-0403	250-0401	250-0561
MC225	250-0399	250-0403	250-0401	250-0561
SC300; 0 to 4	250-0399	250-0403	250-0401	_
SC300; 5 to 9	250-0399	250-0403	250-0401	_
SC300-HC	250-0399	250-0403	250-0401	-
Thread 1-12 UNF AS3/8x1	250-0400	250-0774	250-0402	
MA600	250-0400	250-0774	250-0402	-
MA900	250-0400	250-0275	250-0402	-
MC600	250-0400	250-0275	250-0402	250-0763
NA3/8x1	250-0400	250-0275	250-0402	-
SC650; 0 to 4	250-0400	250-0275	250-0402	_
SC650; 5 to 9	250-0400	250-0275	250-0402	-
SC650-HC	0801-041	250-0275	250-0402	-
	250-0400	250-0275	250-0402	

.

¹ Only mountable on units without button. Remove the button from the shock absorber, if there's one fitted! The following side load adaptors fit -880 model shock absorbers: 250 -0080, -0081, -0082, -0141, -0145, -0562, -0760, -0762 and -0763.

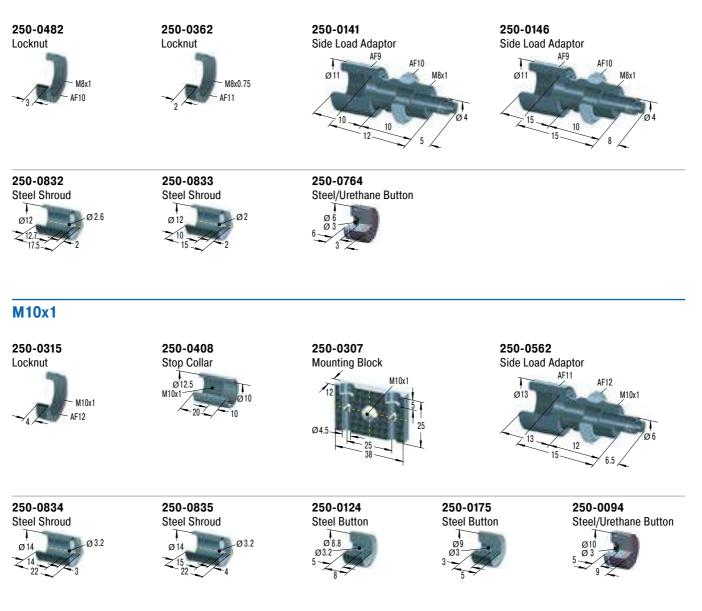
Dimensions can be found on the corresponding accessories pages.

Selection Chart

Steel Shroud	Steel Button	Steel/Urethane Button	Nylon Button	Page
Thread 3/8-32 UNF				
250-0834	250-0124	250-0094	-	48
Thread 1/2-20 UNF				
-	250-0786	250-0094	-	48
250-0836	250-0786	250-0094		48
Thread 9/16-18 UNF				
250-0733	250-0111	250-0095	-	48
250-0785	250-0111	250-0095	250-0753	48
250-0733	included	250-0096	_	48
Thread 3/4-16 UNF				
250-0734	included	250-0098	-	49
250-0170	250-0112	250-0097	250-0754	49
250-0734	included	250-0098	-	49
250-0734	included	250-0105	-	49
250-0734	included	250-0105	-	49
Thread 1-12 UNF	to all solar d	050 0000		10
-	included	250-0099	-	49
250-0765	included	250-0100 250-0100	-	49
- 250-0171	included 10721-000	250-0100	_ 250-0755	49 49
-	included	250-0099	-	49 49
250-0765 250-0171	included	250-0100 250-0099	-	49 49
	included		-	
250-0171 _	included included	250-0099 250-0100	-	49 49
-	included	200-0100	-	49

Miniature Shock Absorber Accessories M5 to M25

M5x0.5



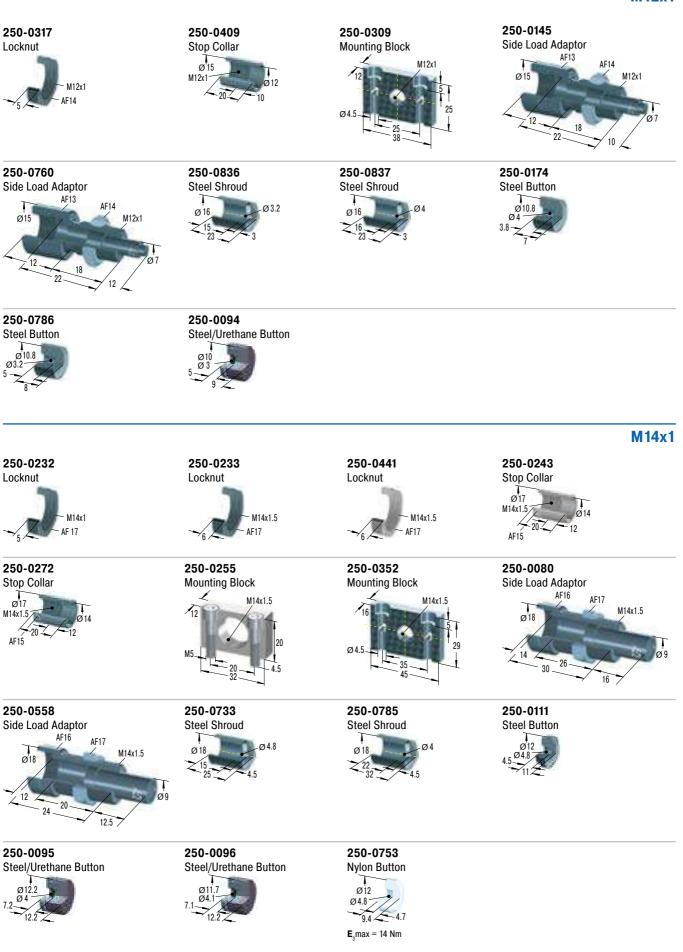
AF8

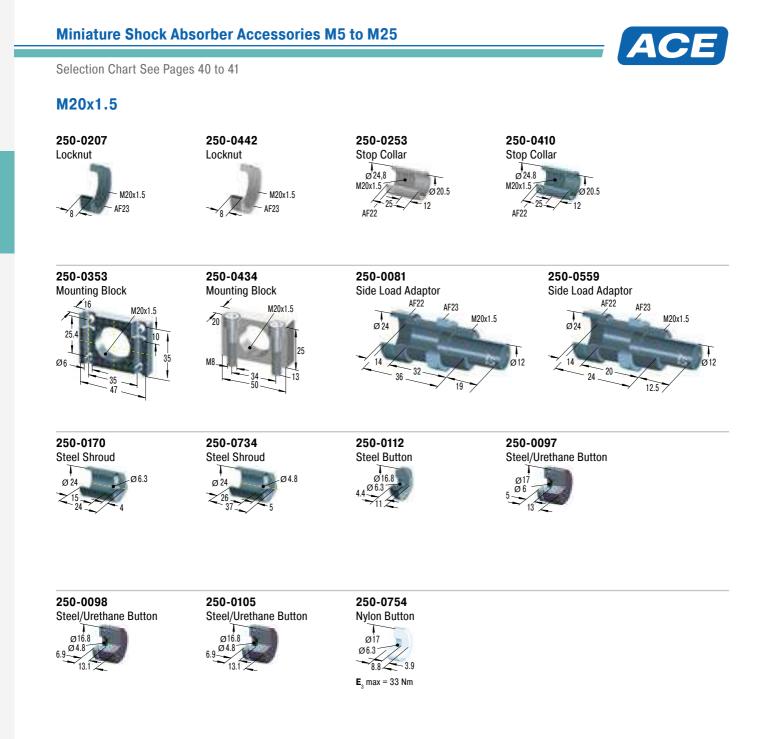
M6x0.5

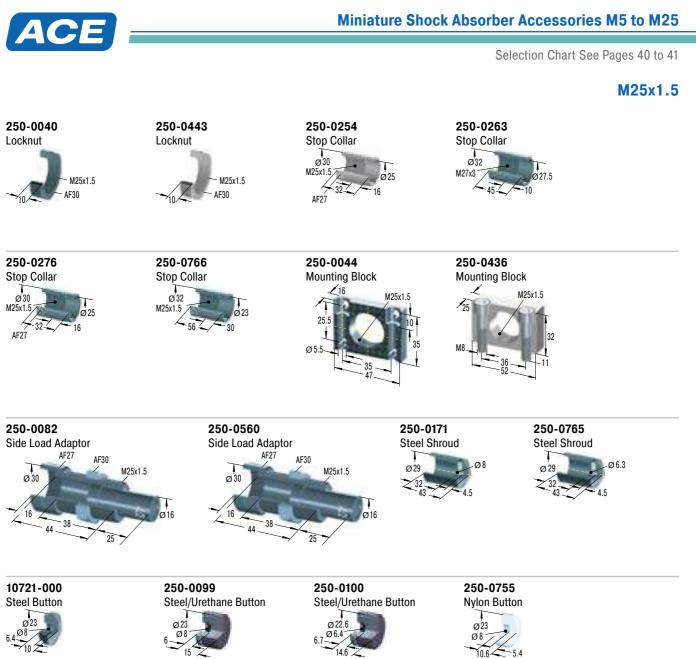
M8x1

Issue 04.2018 - Specifications subject to change

Mounting, installation, ... see pages 50 to 51.



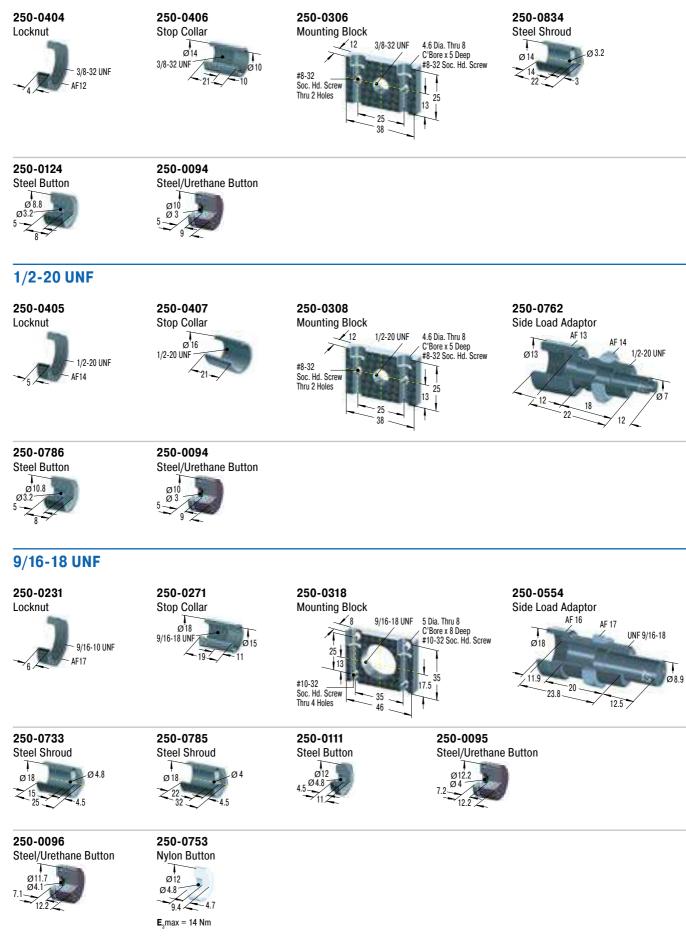

Selection Chart See Pages 40 to 41


M12x1

45

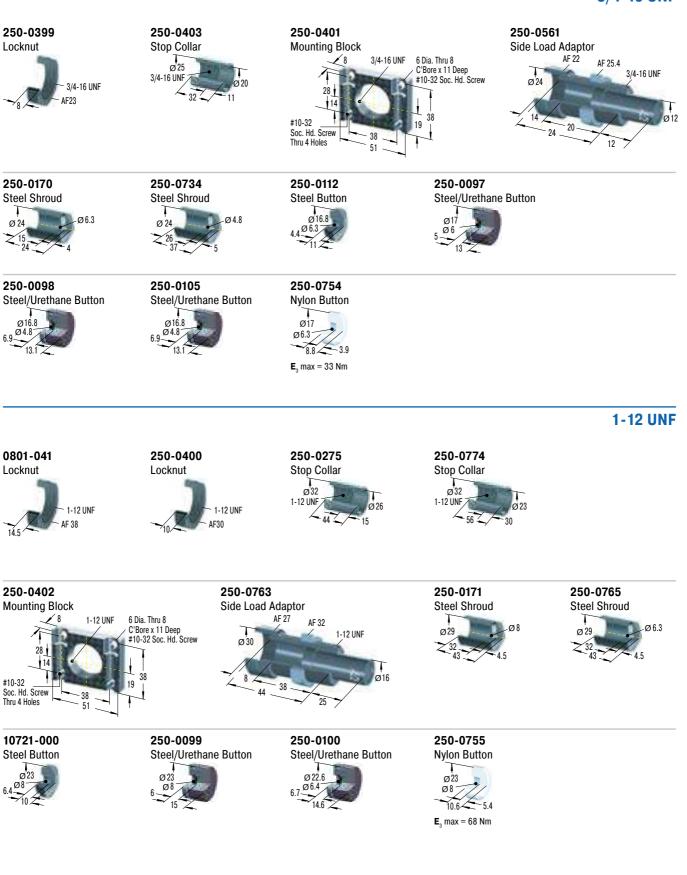
Mounting, installation, ... see pages 50 to 51.

 \mathbf{E}_{3} max = 68 Nm

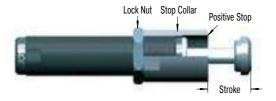

Mounting, installation, ... see pages 50 to 51.

Selection Chart See Pages 42 to 43

3/8-32 UNF


Mounting, installation, \ldots see pages 50 to 51.

Selection Chart See Pages 42 to 43


3/4-16 UNF

49

Mounting, installation, ... see pages 50 to 51.

Stop Collar

All ACE miniature shock absorbers have an integrated positive stop. An optional stop collar can be added if desired to give fine adjustment of final stopping position.

Mounting Block

This versatile block can be mounted to a horizontal or vertical surface. The shock is screwed into the center threaded hole and secured with a locknut.

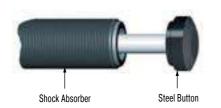
Mounting information Mounting block only. Bolts supplied separately.

Delivery

One locknut is included with each shock.

Steel Shroud

Grinding beads, sand, welding splatter, paints, adhesives, etc. can adhere to the piston rod. They then damage the rod seals and the shock absorber quickly fails. In many cases the installation of the optional steel shroud can provide worthwhile protection and increase lifetime.

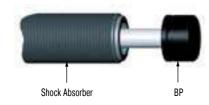

Ordering information

The steel shroud can only be installed onto a shock absorber without rod end button.

For part number MA, MC, SC please order with "-880" suffix. Part numbers MA150, MC150 to MC600 and SC25 to SC190 5-7 are supplied without a button.

Safety information

When installing don't forget to allow operating space for the shroud to move as the shock absorber is cycled.



Steel Button

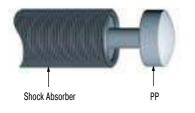
The buttons are made of an oxidized steel, and offer durability beyond nylon or urethane options. They fit easily onto the piston rod of the corresponding shock absorber. Steel buttons are included on most MA and SC models. Options are available all other models that do not include the standard steel button.

Mounting information

Depending on the model, these buttons may be additionally secured with an O-Ring and LOCTITE.

Steel/Urethane Button

These impact buttons made of urethane offer all advantages of the nylon button in terms of reducing noise and wear. They fit easily onto the piston rod of the corresponding shock absorber. The impact buttons must additionally be secured with LOCTITE.


Ordering information

New orders can indlude this button already installed by adding -BP to the part number.

Please refer to the accessories table on pages 40 to 43 to see which shock absorber types the steel urethane buttons are available for.

Nylon Button

While the use of industrial shock absorbers provides a considerable reduction in noise levels, adding impact buttons made of glass fiber reinforced nylon reduces noise levels even further. Additionally, use of a nylon button drastically reduces wear to the impact surface. These nylon buttons are available for the MA150 and the MC150 to MC600 shock absorber series.

Mounting information

The buttons are fitted by pressing onto the piston rod. We recommend to additionally fix the nylon button with LOCTITE.

Side Load Adaptor

Rotating impact motion causes high side load forces on the piston rod. This increases bearing wear and possibly results in rod breakage or bending. With side load impact angles of more than 3° the operation lifetime of the shock absorber reduces rapidly due to increased wear of the rod bearings. The optional side load adaptor provides long lasting solution.

Ordering information

The side load adaptor can only be installed onto a shock absorber without rod end button.

Material

Threaded body and plunger: Hardened high tensile steel, hardened 610 HV1

Mounting information

Secure the side load adaptor with LOCTITE or locknut on the shock absorber. For material combination plunger/impact plate use similar hardness values. We recommend that you install the shock absorber/ side load adaptor using the thread on the side load adaptor.

Safety information

Maximum angle:

250-0141, 250-0145, 250-0146, 250-0562, 250-0762 = 12.5° 250-0554, 250-0561, 250-0763 = 25°

By repositioning the centre of the stroke of the side load plunger to be at 90 degrees to the piston rod, the side load angle can be halved. The use of an external positive stop due to high forces encountered is required.

Shock Absorber Threaded Body Positive Stop Plunger

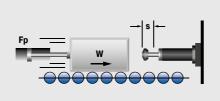
Formulae:

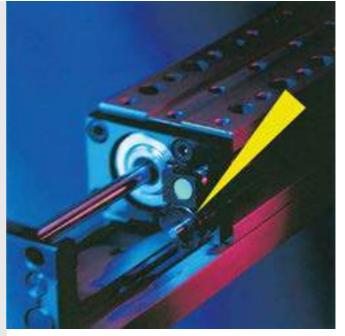
$$\alpha = \tan^{-1} \left(\frac{s}{R_s} \right)$$
 $R_{s \min} = \frac{s}{\tan \alpha \max}$

Example:

s = 0.025 m
$$\alpha$$
 max = 25° (adapter 250-0763)
R_s = 0.1 m
 $\alpha = \tan^{-1} \left(\frac{0.025}{0.1} \right)$ R_{s min} = $\frac{0.025}{\tan 25}$
 $\alpha = 14.04^{\circ}$ R_{s min} = 0.054 m
 α = side load angle ° R_s = mounting radius m
 α max = max. angle ° R_{s min} = min. possible
s = absorber stroke m mounting radius m

Application Examples


MC25


52

Constant deceleration force

ACE miniature shock absorbers are the right alternative. This pneumatic module for high precision, high speed motion intentionally abandoned pneumatic end-of-travel damping. The compact miniature shock absorbers of the type MC25H-NB decelerate the linear motion safer and faster when reaching the end-of-travel position. They accept the moving load gently and decelerate it smoothly throughout the entire stroke length. Additional advantages: simpler construction, smaller pneumatic valves, lower maintenance costs as well as reduced compressed air consumption.

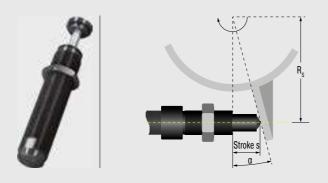
Miniature Shock Absorber in compact pneumatic module

MC225 Obstacle end positions secured

In the case of driving safety training, swinging flags are used to simulate the sudden appearance of obstacles. If the driver reacts too slowly, the flags are swung just as quickly away to avoid damage to the vehicle. In order to protect the end positions of this safety system during to and fro motion, ACE miniature shock absorbers of the type MC225H2 are installed. They come with a special side load adapter for use in this situation. Among other things, this improves the ability of the shock absorber to absorb lateral forces during to and fro motion.

Miniature shock absorbers protect the end positions during driving safety training

Dorninger Hytronics GmbH, 4210 Unterweitersdorf, Austria



Application Examples

sc190 Soft end-of-travel damping on rotary movements

ACE miniature shock absorbers optimize production with minimum expenditure. The cycle rate for an assembly line producing electronic components was increased to 3,600 units/hr. Miniature shock absorbers type SC190-1 decelerate the rapid transfer movements on the production line and using soft damping methods optimize the pick up and set down of components. This soft deceleration technique has increased production and reduced maintenance on the portal and rotary actuator modules. The optional side load adaptor protects the shock absorber from high side load forces and increases the operating lifetime. Using ACE shock absorbers reduces maintenance costs by 50 % and running costs by 20 %, diminishing energy consumption.

Optimised production in the electronics industry Stebie Maschinenbau GmbH, Germany

Industrial Shock Absorbers

Absorbers suited for all loads

ACE industrial shock absorbers work hard. Their application means moving loads are evenly decelerated over the full stroke. The result: the lowest braking force and shortest braking time. The MAGNUM series from ACE is viewed as the reference standard for medium-sized damping technology.

Many innovations such as diaphragm accumulators, long life seals, hardened inner pressure chambers and make a decisive contribution towards extension of the service life. This means that the effective load range can be increased considerably, providing users with more scope with respect to the absorber size and greater utilization of the machine's output. ACE offers a wide range of matching accessories for all absorber series. This eliminates internal production of assembly parts which involves high costs and loss of time.

Innovative damping techniques Reference class for medium sizes Less stress on the machine Increase of production figures Long machine service lives

Industrial Shock Absorbers

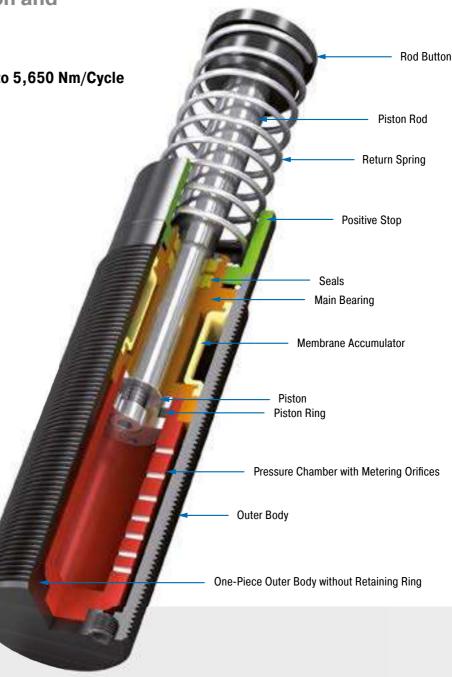
MC33 to MC64	Page 56
Self-Compensating High energy absorption and robust design Linear slides, Swivel units, Turntables, Portal systems	
MC33-V4A to MC64-V4A Self-Compensating, Stainless Steel	Page 60
Optimum corrosion protection Linear slides, Swivel units, Turntables, Food industry	
MC33-HT to MC64-HT	Page 64
Self-Compensating Extreme temperature and high cycle applications Linear slides, Swivel units, Turntables, Machines and plants	
MC33-LT to MC64-LT	Page 68
Self-Compensating Extreme temperature and high cycle applications Linear slides, Swivel units, Turntables, Machines and plants	
SC33 to SC45	Page 72
Self-Compensating, Piston Tube Technology Piston tube design for maximum energy absorption Turntables, Swivel units, Robot arms, Linear slides	
MA/ML33 to MA/ML64	Page 76
Adjustable High energy absorption and progressive adjustment Linear slides, Swivel units, Turntables, Portal systems	
SASL1 1/8	Page 80
Adjustable Low velocity and high effective weight range Linear slides, Pneumatic cylinders, Swivel units, Handling modules	
SALD1/2 to SALD1 1/8	Page 82
Adjustable High energy absorption and a wide effective weight range Linear slides, Pneumatic cylinders, Swivel units, Handling modules	
SALDN3/4	Page 86
Adjustable	

Ø

55

High energy absorption and a wide effective weight range Linear slides, Pneumatic cylinders, Swivel units, Handling modules Products for UNF and metric thread available

MC33 to MC64


High energy absorption and robust design

Self-Compensating Energy capacity 170 Nm/Cycle to 5,650 Nm/Cycle Stroke 23.1 mm to 150 mm

The latest damper technology: The combination of the latest sealing technology, annealed guide bearing and integrated positive stop make these self-compensating shock absorbers from ACE'S MAGNUM range so successful. After all, users benefit from the longer service life of the products, even in the most difficult environments. A continuous outer thread and extensive accessories make their contribution to the success story of the MC33 to MC64.

High energy absorption in a compact design and a wide damping range lead to huge advantages in practice. Alongside generally more compact designs, these small yet very powerful absorbers enable full use of the machine's performance. Self-compensating shock absorbers react to changing energy conditions, without adjustment.

These self-compensating industrial shock absorbers are used in all areas of industrial automation and machine engineering, especially in automation and for gantries.

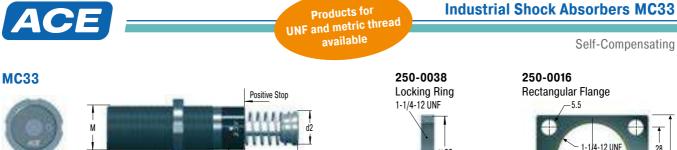
Technical Data

Energy capacity: 170 Nm/Cycle to 5,650 Nm/Cycle

Impact velocity range: 0.15 m/s to 5 m/s. Other speeds on request.

Operating temperature range: -12 °C to +66 °C. Other temperatures on request.

Mounting: In any position


Positive stop: Integrated

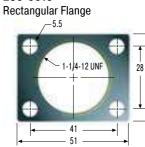
Material: Outer body: Nitride hardened steel; Piston rod: Hard chrome plated steel; Rod end button: Hardened steel and corrosion-resistant coating; Return spring: Zinc plated or plasticcoated steel; Accessories: Steel with black oxide finish or nitride hardened **Damping medium:** Automatic Transmission Fluid (ATF)

Application field: Linear slides, Swivel units, Turntables, Portal systems, Machines and plants, Tool machines, Machining centers, Z-axes, Impact panels, Handling modules

Note: A noise reduction of 3 dB to 7 dB is possible when using the special impact button. For emergency use only applications and for continous use (with additional cooling) it is sometimes possible to exceed the published max. capacity ratings. In this case, please consult ACE. **Safety information:** External materials in the surrounding area can attack the seal components and lead to a shorter service life. Please contact ACE for appropriate solution suggestions. Do not paint the shock absorbers due to heat emission.

On request: Special oils, nickel-plated, increased corrosion protection, mounting inside air cylinders or other special options are available on request.

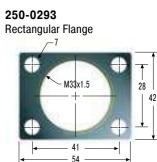
Product available for UNF and metric thread (for metric add suffix -M from part number) M36x1.5 and M42x1.5 also available to order


L2

dİ

A max

Stroke



38

250-0292

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Model Type Prefix

Standard Models

MC: Self-Contained with return spring, self-compensating **Special Models**

MCA: Air/Oil return without return spring. Use only with external air/oil tank.

MCS: Air/Oil return with return spring. Use only with external air/oil tank. MCN: Self-Contained without return spring

Ordering Example

MC3325M-1 Self-Compensating 33 for 1-1/4-12 UNF or M33 threads Stroke 0.98" (25 mm) Metric Thread (omitted when using thread UNF 1 1/4-12) Effective Weight Range Version _

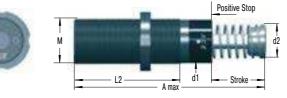
Dimensions						
	Stroke	A max.	d1	d2	L2	М
TYPES	mm	mm	mm	mm	mm	
MC3325	23.2	138	30	25	83	1-1/4-12 UNF / M33x1.5
MC3350	48.6	189	30	25	108	1-1/4-12 UNF / M33x1.5

Performance												
	Max. Energy Capacity				Effective Weight							
			E4 with Air/Oil	E₄ with Oil				Return Force	Return Force	Return	³ Side Load Angle	
	¹ E ₃	E4	Tank	Recirculation	² We min.	² We max.	Hardness	min.	max.	Time	max.	Weight
TYPES	Nm/cycle	Nm/h	Nm/h	Nm/h	kg	kg		N	N	S	٥	kg
MC3325-0	170	75,000	124,000	169,000	3	11	-0	45	90	0.03	4	0.51
MC3325-1	170	75,000	124,000	169,000	9	40	-1	45	90	0.03	4	0.51
MC3325-2	170	75,000	124,000	169,000	30	120	-2	45	90	0.03	4	0.51
MC3325-3	170	75,000	124,000	169,000	100	420	-3	45	90	0.03	4	0.51
MC3325-4	170	75,000	124,000	169,000	350	1,420	-4	45	90	0.03	4	0.51
MC3350-0	330	85,000	135,000	180,000	5	22	-0	45	135	0.06	3	0.63
MC3350-1	330	85,000	135,000	180,000	18	70	-1	45	135	0.06	3	0.63
MC3350-2	330	85,000	135,000	180,000	60	250	-2	45	135	0.06	3	0.63
MC3350-3	330	85,000	135,000	180,000	210	840	-3	45	135	0.06	3	0.63
MC3350-4	330	85,000	135,000	180,000	710	2,830	-4	45	135	0.06	3	0.63

¹ For emergency use only applications it is sometimes possible to exceed the above ratings. Please consult ACE for further details. ² The effective weight range limits can be raised or lowered to special order.

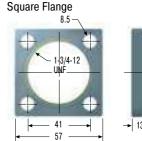
³ For applications with higher side load angles please contact ACE.

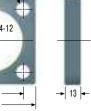
Industrial Shock Absorbers MC45


Products for UNF and metric thread available

Self-Compensating

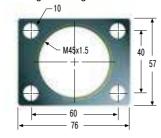
MC45




Product available for UNF and metric thread (for metric add suffix -M from part number)

57

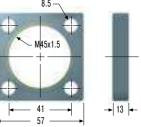
250-0023



250-0024 **Rectangular Flange** -8.5 1-3/4-12 UNF

60

76


250-0299 **Rectangular Flange**

250-0297 Locking Ring

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Model Type Prefix

Standard Models

MC: Self-Contained with return spring, self-compensating **Special Models**

MCA: Air/Oil return without return spring. Use only with external air/oil tank.

MCS: Air/Oil return with return spring. Use only with external air/oil tank. MCN: Self-Contained without return spring

Ordering Example	MC4525M-1					
Self-Compensating	<u>+</u> + + + +					
45 for 1-3/4-12 UNF or M45 threads						
Stroke 0.98" (25 mm)						
Metric Thread						
(omitted when using thread UNF 1-3/4-12)						
Effective Weight Range Version						

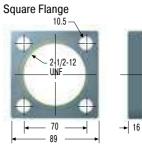
Dimensions М Stroke A max. d1 d2 L2 TYPES mm mm mm mm mm MC4525 23.1 145 42 35 95 1-3/4-12 UNF / M45x1.5 1-3/4-12 UNF / M45x1.5 MC4550 48.5 195 42 35 120 MC4575 73.9 246 42 35 145 1-3/4-12 UNF / M45x1.5

Performance

					1							
		Max. Er	ergy Capacity		Ef	fective Wei	ght					
			E ₄ with Air/Oil	E₄ with Oil				Return Force	Return Force	Return	³ Side Load Angle	
	¹ E ₃	E4	Tank	Recirculation	² We min.	² We max.	Hardness	min.	max.	Time	max.	Weight
TYPES	Nm/cycle	Nm/h	Nm/h	Nm/h	kg	kg		N	N	S	٥	kg
MC4525-0	370	107,000	158,000	192,000	7	27	-0	70	100	0.03	4	1.13
MC4525-1	370	107,000	158,000	192,000	20	90	-1	70	100	0.03	4	1.13
MC4525-2	370	107,000	158,000	192,000	80	310	-2	70	100	0.03	4	1.13
MC4525-3	370	107,000	158,000	192,000	260	1,050	-3	70	100	0.03	4	1.13
MC4525-4	370	107,000	158,000	192,000	890	3,540	-4	70	100	0.03	4	1.13
MC4550-0	740	112,000	192,000	248,000	13	54	-0	70	145	0.08	3	1.36
MC4550-1	740	112,000	192,000	248,000	45	180	-1	70	145	0.08	3	1.36
MC4550-2	740	112,000	192,000	248,000	150	620	-2	70	145	0.08	3	1.36
MC4550-3	740	112,000	192,000	248,000	520	2,090	-3	70	145	0.08	3	1.36
MC4550-4	740	112,000	192,000	248,000	1,800	7,100	-4	70	145	0.08	3	1.36
MC4575-0	1,130	146,000	225,000	282,000	20	80	-0	50	180	0.11	2	1.59
MC4575-1	1,130	146,000	225,000	282,000	70	270	-1	50	180	0.11	2	1.59
MC4575-2	1,130	146,000	225,000	282,000	230	930	-2	50	180	0.11	2	1.59
MC4575-3	1,130	146,000	225,000	282,000	790	3,140	-3	50	180	0.11	2	1.59
MC4575-4	1,130	146,000	225,000	282,000	2,650	10,600	-4	50	180	0.11	2	1.59

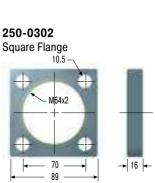
¹ For emergency use only applications it is sometimes possible to exceed the above ratings. Please consult ACE for further details.

² The effective weight range limits can be raised or lowered to special order.


³ For applications with higher side load angles please contact ACE.

stroke model does not include stop collar.

Positive stop is provided by the rod button (Ø 60 mm) and a stop block.



Self-Compensating

250-0301 Locking Ring

M64x2

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Model Type Prefix

Standard Models

MC: Self-Contained with return spring, self-compensating **Special Models**

MCA: Air/Oil return without return spring. Use only with external air/oil tank.

MCS: Air/Oil return with return spring. Use only with external air/oil tank. MCN: Self-Contained without return spring

Ordering Example

MC6450M-1

Self-Compensating 64 for 2-1/2-12 UNF or M64 threads Stroke 0.97" (50 mm) _ Metric Thread (omitted when using thread UNF 2-1/2-12) Effective Weight Range Version _

Dimensions						
	Stroke	A max.	d1	d2	L2	М
TYPES	mm	mm	mm	mm	mm	
MC6450	48.6	225	60	48	140	2-1/2-12 UNF / M64x2
MC64100	99.4	326	60	48	191	2-1/2-12 UNF / M64x2
MC64150	150	450	60	48	241	2-1/2-12 UNF / M64x2

Performance												
		Max. Er	ergy Capacity		Eff	fective Wei	ght					
			E4 with Air/Oil	E₄ with Oil				Return Force	Return Force	Return	³ Side Load Angle	
	1 E3	E4	Tank	Recirculation	² We min.	² We max.	Hardness	min.	max.	Time	max.	Weight
TYPES	Nm/cycle	Nm/h	Nm/h	Nm/h	kg	kg		N	N	S	0	kg
MC6450-0	1,870	146,000	293,000	384,000	35	140	-0	90	155	0.12	4	2.90
MC6450-1	1,870	146,000	293,000	384,000	140	540	-1	90	155	0.12	4	2.90
MC6450-2	1,870	146,000	293,000	384,000	460	1,850	-2	90	155	0.12	4	2.90
MC6450-3	1,870	146,000	293,000	384,000	1,600	6,300	-3	90	155	0.12	4	2.90
MC6450-4	1,870	146,000	293,000	384,000	5,300	21,200	-4	90	155	0.12	4	2.90
MC64100-0	3,730	192,000	384,000	497,000	70	280	-0	105	270	0.34	3	3.70
MC64100-1	3,730	192,000	384,000	497,000	270	1,100	-1	105	270	0.34	3	3.70
MC64100-2	3,730	192,000	384,000	497,000	930	3,700	-2	105	270	0.34	3	3.70
MC64100-3	3,730	192,000	384,000	497,000	3,150	12,600	-3	105	270	0.34	3	3.70
MC64100-4	3,730	192,000	384,000	497,000	10,600	42,500	-4	105	270	0.34	3	3.70
MC64150-0	5,650	248,000	497,000	644,000	100	460	-0	75	365	0.48	2	5.10
MC64150-1	5,650	248,000	497,000	644,000	140	1,640	-1	75	365	0.48	2	5.10
MC64150-2	5,650	248,000	497,000	644,000	1,390	5,600	-2	75	365	0.48	2	5.10
MC64150-3	5,650	248,000	497,000	644,000	4,700	18,800	-3	75	365	0.48	2	5.10
MC64150-4	5,650	248,000	497,000	644,000	16,000	63,700	-4	75	365	0.48	2	5.10

MC33-V4A to MC64-V4A

Optimum corrosion protection

Self-Compensating, Stainless Steel Energy capacity 170 Nm/Cycle to 3,730 Nm/Cycle Stroke 23.1 mm to 99.4 mm

The latest damper technology in stainless steel: The self-compensating industrial shock absorbers MC33 to MC64 from the tried-andtested and popular MAGNUM range is also available with all outer components made from stainless steel, material AISI 316L (except piston rod). They are filled in the factory with special oil, which meets the permit conditions (NSF-H1) for the food industry.

Just like the standard product family, the MAGNUM stainless steel models are distinguished by their robust, modern sealing technology, high energy absorption in a compact design, integrated positive stop and a wide damping range. Equipped with a PUR head, they are available in thread sizes M33x1.5 to M64x2 with damping strokes up to 100 mm. Self-compensating shock absorbers react to changing energy conditions, without adjustment.

These self-compensating industrial shock absorbers made of stainless steel from ACE are mainly used in the food, medical, electronics and offshore industries, but also in many other markets.

Rod Button Piston Rod **Return Spring** Positive Stop Seals Main Bearing Membrane Accumulator Stainless Steel Locking Ring Piston Ring Piston Pressure Chamber with Metering Orifices Stainless Steel Outer Body **One-Piece Outer Body without Retaining Ring**

Technical Data

Energy capacity: 170 Nm/Cycle to 3,730 Nm/Cycle

Impact velocity range: 0.15 m/s to 5 m/s. Other speeds on request.

Operating temperature range: -12 °C to +66 °C. Other temperatures on request.

Mounting: In any position

Positive stop: Integrated

Material: Outer body, Main bearing, Accessories, Locking ring: Stainless steel (1.4404, AISI 316L); Piston rod: Hard chrome plated steel; Rod end button: Stainless steel (1.4404, AISI 316L) with elastomer insert; Return spring: Stainless steel Damping medium: Special oil NSF-H1 approved

Application field: Linear slides, Swivel units, Turntables, Food industry, Medical technology, Portal systems, Machines and plants, Tool machines, Machining centers, Z-axes

Note: Impact button for noise reduction included. For emergency use only applications and for continous use (with additional cooling) it is sometimes possible to exceed the published max. capacity ratings. In this case, please consult ACE.

Safety information: External materials in the surrounding area can attack the seal components and lead to a shorter service life. Please

contact ACE for appropriate solution suggestions. Do not paint the shock absorbers due to heat emission.

On request: Special oils, other special options and special accessories are available on request.

Industrial Shock Absorbers MC33M-V4A

Self-Compensating, Stainless Steel

MC33M-V4A

М M33x1.5 M33x1.5

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Model Type Prefix

Standard Models

Dimensions

Issue 04.2018 - Specifications subject to change

MC: Self-Contained with return spring, self-compensating **Special Models**

MCA: Air/Oil return without return spring. Use only with external air/oil tank.

MCS: Air/Oil return with return spring. Use only with external air/oil tank. MCN: Self-Contained without return spring

Ordering Example	MC3325M-2-V4A					
Self-Compensating	<u>+ + + + +</u>					
Thread Size M33						
Stroke 0.98" (25 mm)						
Effective Weight Range Version						
Stainless Steel 1.4404/AISI 316L						

	Stroke	A max.	d1	d2	L1	L2
TYPES	mm	mm	mm	mm	mm	mm
MC3325M-V4A	23.2	151.2	30	29.2	13.2	83
MC3350M-V4A	48.6	202.2	30	29.2	13.2	108
Performance						

	Max. Energy Capacity		Ef	Effective Weight						
TYPES	E ₃ Nm/cycle	E₄ Nm/h	¹ We min. kg	¹ We max. kg	Hardness	Return Force min. N	Return Force max. N	Return Time s	² Side Load Angle max.	Weight kg
MC3325M-0-V4A	170	75,000	3	11	-0	45	90	0.03	4	0.51
MC3325M-1-V4A	170	75,000	9	40	-1	45	90	0.03	4	0.51
MC3325M-2-V4A	170	75,000	30	120	-2	45	90	0.03	4	0.51
MC3325M-3-V4A	170	75,000	100	420	-3	45	90	0.03	4	0.51
MC3325M-4-V4A	170	75,000	350	1,420	-4	45	90	0.03	4	0.51
MC3350M-0-V4A	330	85,000	5	22	-0	45	135	0.06	3	0.63
MC3350M-1-V4A	330	85,000	18	70	-1	45	135	0.06	3	0.63
MC3350M-2-V4A	330	85,000	60	250	-2	45	135	0.06	3	0.63
MC3350M-3-V4A	330	85,000	240	840	-3	45	135	0.06	3	0.63
MC3350M-4-V4A	330	85,000	710	2,830	-4	45	135	0.06	3	0.63

 $^{\rm 1}$ For emergency use only applications it is sometimes possible to ex $^{\rm 2}$ For applications with higher side load angles please contact ACE.

Self-Compensating, Stainless Steel

MC45M-V4A

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Model Type Prefix

Standard Models

MC: Self-Contained with return spring, self-compensating **Special Models**

MCA: Air/Oil return without return spring. Use only with external air/oil tank.

MCS: Air/Oil return with return spring. Use only with external air/oil tank. MCN: Self-Contained without return spring

Ordering Example	MC4525M-2-V4A
Self-Compensating	+ + + +
Thread Size M45	
Stroke 0.98" (25 mm)	
Effective Weight Range Version	
Stainless Steel 1.4404/AISI 316L	

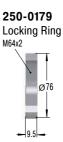
Dimonolono

Dimensions							
	Stroke	A max.	d1	d2	L1	L2	М
TYPES	mm	mm	mm	mm	mm	mm	
MC4525M-V4A	23.1	164.5	42	42	19.4	95	M45x1.5
MC4550M-V4A	48.5	214.4	42	42	19.4	120	M45x1.5
MC4575M-V4A	73.9	265.4	42	42	19.4	145	M45x1.5

Performance

	Max. Energ	y Capacity	Ef	fective Wei	ght					
	E3	E,	¹ We min.	¹ We max.	Hardness	Return Force min.	Return Force max.	Return Time	² Side Load Angle max.	Weight
TYPES	Nm/cycle	Nm,∕h	kg	kg		N	N	s	٥	kg
MC4525M-0-V4A	370	107,000	7	27	-0	70	100	0.03	4	1.14
MC4525M-1-V4A	370	107,000	20	90	-1	70	100	0.03	4	1.14
MC4525M-2-V4A	370	107,000	80	310	-2	70	100	0.03	4	1.14
MC4525M-3-V4A	370	107,000	260	1,050	-3	70	100	0.03	4	1.14
MC4525M-4-V4A	370	107,000	890	3,540	-4	70	100	0.03	4	1.14
MC4550M-0-V4A	740	112,000	13	54	-0	70	145	0.08	3	1.36
MC4550M-1-V4A	740	112,000	45	180	-1	70	145	0.08	3	1.36
MC4550M-2-V4A	740	112,000	150	620	-2	70	145	0.08	3	1.36
MC4550M-3-V4A	740	112,000	520	2,090	-3	70	145	0.08	3	1.36
MC4550M-4-V4A	740	112,000	1,800	7,100	-4	70	145	0.08	3	1.36
MC4575M-0-V4A	1,130	146,000	20	80	-0	50	180	0.11	2	1.59
MC4575M-1-V4A	1,130	146,000	70	270	-1	50	180	0.11	2	1.59
MC4575M-2-V4A	1,130	146,000	230	930	-2	50	180	0.11	2	1.59
MC4575M-3-V4A	1,130	146,000	790	3,140	-3	50	180	0.11	2	1.59
MC4575M-4-V4A	1,130	146,000	2,650	10,600	-4	50	180	0.11	2	1.59

¹ For emergency use only applications it is sometimes possible to exceed the above ratings. Please consult ACE for further details.
² For applications with higher side load angles please contact ACE.



Industrial Shock Absorbers MC64M-V4A

Self-Compensating, Stainless Steel

MC64M-V4A

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Model Type Prefix

Standard Models

MC: Self-Contained with return spring, self-compensating **Special Models**

MCA: Air/Oil return without return spring. Use only with external air/oil tank.

MCS: Air/Oil return with return spring. Use only with external air/oil tank. MCN: Self-Contained without return spring

Ordering Example	MC6450M-2-V4A					
Self-Compensating	+ + + +					
Thread Size M64						
Stroke 0.97" (50 mm)						
Effective Weight Range Version						
Stainless Steel 1.4404/AISI 316L						

Dimensions							
	Stroke	A max.	d1	d2	L1	L2	М
TYPES	mm	mm	mm	mm	mm	mm	
MC6450M-V4A	48.6	244.1	60	60	19.1	140	M64x2
MC64100M-V4A	99.4	345.1	60	60	19.1	191	M64x2

Performance										
	Max. Energ	y Capacity	Ef	Effective Weight						
TYPES	E ₃ Nm/cycle	E₄ Nm/h	¹ We min. kg	¹ We max. kg	Hardness	Return Force min. N	Return Force max. N	Return Time s	² Side Load Angle max.	Weight kg
MC6450M-0-V4A	1,870	146,000	35	140	-0	90	155	0.12	4	2.90
MC6450M-1-V4A	1,870	146,000	140	540	-1	90	155	0.12	4	2.90
MC6450M-2-V4A	1,870	146,000	460	1,850	-2	90	155	0.12	4	2.90
MC6450M-3-V4A	1,870	146,000	1,600	6,300	-3	90	155	0.12	4	2.90
MC6450M-4-V4A	1,870	146,000	5,300	21,200	-4	90	155	0.12	4	2.90
MC64100M-0-V4A	3,730	192,000	70	280	-0	105	270	0.34	3	3.70
MC64100M-1-V4A	3,730	192,000	270	1,100	-1	105	270	0.34	3	3.70
MC64100M-2-V4A	3,730	192,000	930	3,700	-2	105	270	0.34	3	3.70
MC64100M-3-V4A	3,730	192,000	3,150	12,600	-3	105	270	0.34	3	3.70
MC64100M-4-V4A	3,730	192,000	10,600	42,500	-4	105	270	0.34	3	3.70

¹ For emergency use only applications it is sometimes possible to exceed the above ratings. Please consult ACE for further details. ² For applications with higher side load angles please contact ACE.

Products for UNF and metric thread available

MC33-HT to MC64-HT

Extreme temperature and high cycle applications

Self-Compensating Energy capacity 170 Nm/Cycle to 3,730 Nm/Cycle Stroke 23.1 mm to 99.4 mm

Greater application range: just like all MAGNUM types from the product family MC33 to MC64, the HT (high temperature) industrial shock absorbers are also made from one solid piece. They use special seals and fluids. This means that these versions can even be used at extreme temperatures of 0 °C to 150 °C in order to safely and reliably damp masses and absorb 100 % of the kinetic energy.

These ready-to-install machine elements are recommended even under the most unfavorable conditions. Additional benefits are their robust, innovative sealing technology, high energy absorption in a compact design, fixed positive stop and a wide damping range. Self-compensating shock absorbers react to changing energy conditions, without adjustment.

Designed for use in extreme temperature ranges, these self-compensating industrial shock absorbers are suitable almost anywhere in plant, industrial, automation and machine engineering.

Rod Button Piston Rod **Return Spring** Positive Stop Seals Main Bearing Membrane Accumulator Piston Piston Ring Pressure Chamber with Metering Orifices Outer Body **One-Piece Outer Body without Retaining Ring**

Technical Data

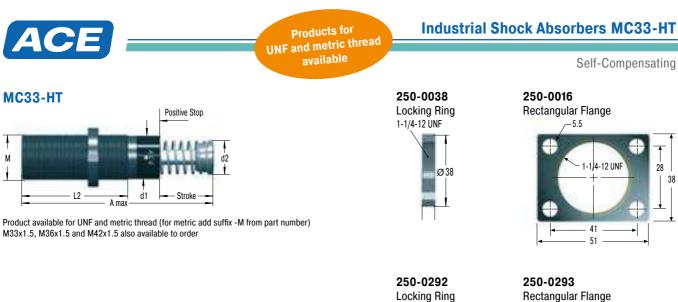
Energy capacity: 170 Nm/Cycle to 3,730 Nm/Cycle

Impact velocity range: 0.15 m/s to 5 m/s. Other speeds on request.

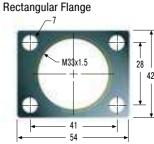
Operating temperature range: 0 °C to 150 °C

Mounting: In any position

Positive stop: Integrated


Material: Outer body: Nitride hardened steel; Piston rod: Hard chrome plated steel; Rod end button: Hardened steel and corrosion-resistant coating; Return spring: Zinc plated or plasticcoated steel; Accessories: Steel with black oxide finish or nitride hardened Damping medium: Synthetic high temperature oil

Application field: Linear slides, Swivel units, Turntables, Machines and plants, Tool machines, Machining centers, Z-axes


Note: A noise reduction of 3 dB to 7 dB is possible when using the special impact button.

Safety information: External materials in the surrounding area can attack the seal components and lead to a shorter service life. Please contact ACE for appropriate solution suggestions. Do not paint the shock absorbers due to heat emission.

On request: Nickel-plated, increased corrosion protection, mounting inside air cylinders or other special options are available on request. Adjustable HT and LT shock absorbers.

Ø 39 6

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Complete details required when ordering

Load to be decelerated: m (kg) Impact velocity: v (m/s) Propelling force: F (N) Operating cycles per hour: c (/hr) Number of absorbers in parallel: n Ambient temperature: °C

Ordering Example

M33x1.5

MC3350M-2-HT Self-Compensating 33 for 1-1/4-12 UNF or M33 threads Stroke 1.97" (50 mm) Metric Thread (omitted when using thread UNF 1-1/4-12) Effective Weight Range Version . HT = Version for High Temperature Use

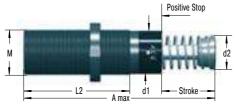
Dimensions						
	Stroke	A max.	d1	d2	L2	М
TYPES	mm	mm	mm	mm	mm	
MC3325-HT	23.2	138	30	25	83	1-1/4-12 UNF / M33x1.5
MC3350-HT	48.6	189	30	25	108	1-1/4-12 UNF / M33x1.5

Performance

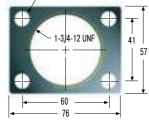
	N	lax. Energy Capaci	ty		Effective Weight	1		
TYPES	E ₃ Nm/cycle	E₄ at 20 °C Nm/h	E₄ at 100 °C Nm/h	1 We min. kg	¹ We max. kg	Hardness	² Side Load Angle max.	Weight kg
MC3325-0-HT	170	215,000	82,000	3	11	-0	4	0.51
MC3325-1-HT	170	215,000	82,000	9	40	-1	4	0.51
MC3325-2-HT	170	215,000	82,000	30	120	-2	4	0.51
MC3325-3-HT	170	215,000	82,000	100	420	-3	4	0.51
MC3325-4-HT	170	215,000	82,000	350	1,420	-4	4	0.51
MC3350-0-HT	330	244,000	93,000	5	22	-0	3	0.63
MC3350-1-HT	330	244,000	93,000	18	70	-1	3	0.63
MC3350-2-HT	330	244,000	93,000	60	250	-2	3	0.63
MC3350-3-HT	330	244,000	93,000	240	840	-3	3	0.63
MC3350-4-HT	330	244,000	93,000	710	2,830	-4	3	0.63

¹ The effective weight range limits can be raised or lowered to special order.

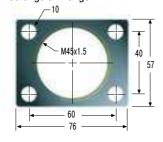
² For applications with higher side load angles please contact ACE.


Industrial Shock Absorbers MC45-HT

Products for UNF and metric thread available


Self-Compensating

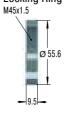
MC45-HT



Product available for UNF and metric thread (for metric add suffix -M from part number)

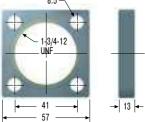
250-0024 **Rectangular Flange** -8.5

250-0299 **Rectangular Flange**

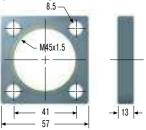

250-0297 Locking Ring

250-0041

1-3/4-12 UNF


Locking Ring

Ø 57



250-0023 Square Flange

85

250-0298 Square Flange

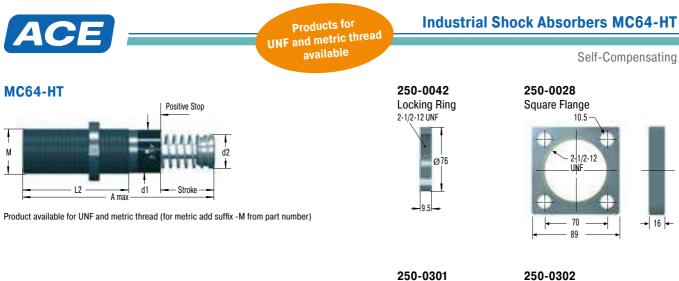
The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Complete details required when ordering

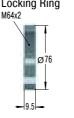
Load to be decelerated: m (kg) Impact velocity: v (m/s) Propelling force: F (N) Operating cycles per hour: c (/hr) Number of absorbers in parallel: n Ambient temperature: °C

Ordering Example

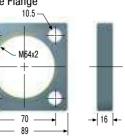
MC4525M-2-HT Self-Compensating 45 for 1-3/4-12 UNF or M45 threads Stroke 0.91" (25 mm) Metric Thread (omitted when using thread UNF 1-3/4-12) Effective Weight Range Version HT = Version for High Temperature Use


Dimensions						
	Stroke	A max.	d1	d2	L2	М
TYPES	mm	mm	mm	mm	mm	
MC4525-HT	23.1	151	42	35	95	1-3/4-12 UNF / M45x1.5
MC4550-HT	48.5	195	42	35	120	1-3/4-12 UNF / M45x1.5

Performance


	N	lax. Energy Capaci	ity		Effective Weight	:		
TYPES	E ₃ Nm/cycle	E₄ at 20 °C Nm/h	E₄ at 100 °C Nm/h	¹ We min. kg	¹ We max. kg	Hardness	² Side Load Angle max.	Weight kg
MC4525-0-HT	370	307,000	117,000	7	27	-0	4	1.13
MC4525-1-HT	370	307,000	117,000	20	90	-1	4	1.13
MC4525-2-HT	370	307,000	117,000	80	310	-2	4	1.13
MC4525-3-HT	370	307,000	117,000	260	1,050	-3	4	1.13
MC4525-4-HT	370	307,000	117,000	890	3,540	-4	4	1.13
MC4550-0-HT	740	321,000	122,000	13	54	-0	3	1.36
MC4550-1-HT	740	321,000	122,000	45	180	-1	3	1.36
MC4550-2-HT	740	321,000	122,000	154	620	-2	3	1.36
MC4550-3-HT	740	321,000	122,000	522	2,090	-3	3	1.36
MC4550-4-HT	740	321,000	122,000	1,800	7,100	-4	3	1.36

¹ The effective weight range limits can be raised or lowered to special order.


² For applications with higher side load angles please contact ACE.

Locking Ring

250-0302 Square Flange 10.5

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Complete details required when ordering

Load to be decelerated: m (kg) Impact velocity: v (m/s) Propelling force: F (N) Operating cycles per hour: c (/hr) Number of absorbers in parallel: n Ambient temperature: °C

Ordering Example

MC6450M-2-HT Self-Compensating 64 for 2-1/2-12 UNF or M64 threads Stroke 1.91" (50 mm) Metric Thread (omitted when using thread UNF 2-1/2-12) Effective Weight Range Version _

HT = Version for High Temperature Use

Dimensions						
	Stroke	A max.	d1	d2	L2	М
TYPES	mm	mm	mm	mm	mm	
MC6450-HT	48.6	225	60	48	140	2-1/2-12 UNF / M64x2
MC64100-HT	99.4	326	60	48	191	2-1/2-12 UNF / M64x2

Performance

	N	lax. Energy Capaci	ity		Effective Weight	1		
TYPES	E ₃ Nm/cycle	E₄ at 20 °C Nm/h	E₄ at 100 °C Nm/h	¹ We min. kg	¹ We max. kg	Hardness	² Side Load Angle max.	Weight kg
MC6450-0-HT	1,870	419,000	159,000	35	140	-0	4	2.90
MC6450-1-HT	1,870	419,000	159,000	140	540	-1	4	2.90
MC6450-2-HT	1,870	419,000	159,000	460	1,850	-2	4	2.90
MC6450-3-HT	1,870	419,000	159,000	1,600	6,300	-3	4	2.90
MC6450-4-HT	1,870	419,000	159,000	5,300	21,200	-4	4	2.90
MC64100-0-HT	3,730	550,000	200,000	70	280	-0	3	3.70
MC64100-1-HT	3,730	550,000	200,000	270	1,100	-1	3	3.70
MC64100-2-HT	3,730	550,000	200,000	930	3,700	-2	3	3.70
MC64100-3-HT	3,730	550,000	200,000	3,150	12,600	-3	3	3.70
MC64100-4-HT	3,730	550,000	200,000	10,600	42,500	-4	3	3.70

¹ The effective weight range limits can be raised or lowered to special order.

² For applications with higher side load angles please contact ACE.

Products for UNF and metric thread available

MC33-LT to MC64-LT

Extreme temperature and high cycle applications

Self-Compensating Energy capacity 170 Nm/Cycle to 5,650 Nm/Cycle Stroke 23.1 mm to 150 mm

Greater application range: just like all MAGNUM types from the product family MC33 to MC64, the LT (low temperature) industrial shock absorbers are also made from one solid piece. They use special seals and fluids. This means that these versions can even be used at extreme temperatures of -50 °C to 66 °C in order to safely and reliable damp masses and absorb 100 % of the kinetic energy.

These ready-to-install machine elements are recommended even under the most unfavorable conditions. Additional benefits are their robust, innovative sealing technology, high energy absorption in a compact design, fixed positive stop and a wide damping range. Self-compensating shock absorbers react to changing energy conditions, without adjustment.

Designed for use in extreme temperature ranges, these self-compensating industrial shock absorbers are suitable almost anywhere in plant, industrial, automation and machine engineering.

Rod Button Piston Rod **Return Spring** Positive Stop Seals Main Bearing Membrane Accumulator Piston Piston Ring Pressure Chamber with Metering Orifices Outer Body **One-Piece Outer Body without Retaining Ring**

Technical Data

Energy capacity: 170 Nm/Cycle to 5,650 Nm/Cycle

Impact velocity range: 0.15 m/s to 5 m/s. Other speeds on request.

Operating temperature range: -50 °C to +66 °C

Mounting: In any position

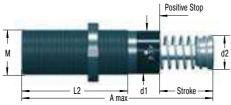
Positive stop: Integrated

Material: Outer body: Nitride hardened steel; Piston rod: Hard chrome plated steel; Rod end button: Hardened steel and corrosion-resistant coating; Return spring: Zinc plated or plasticcoated steel; Accessories: Steel with black oxide finish or nitride hardened

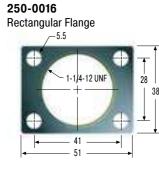
Damping medium: Low temperature hydraulic oil

Application field: Linear slides, Swivel units, Turntables, Machines and plants, Tool machines, Machining centers, Z-axes

Note: A noise reduction of 3 dB to 7 dB is possible when using the special impact button.

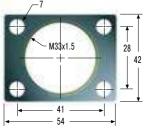

Safety information: External materials in the surrounding area can attack the seal components and lead to a shorter service life. Please contact ACE for appropriate solution suggestions. Do not paint the shock absorbers due to heat emission.

On request: Nickel-plated, increased corrosion protection, mounting inside air cylinders or other special options are available on request. Adjustable HT and LT shock absorbers.


Self-Compensating

MC33-LT

Product available for UNF and metric thread (for metric add suffix -M from part number) M33x1.5, M36x1.5 and M42x1.5 also available to order



250-0292

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Complete details required when ordering

Load to be decelerated: m (kg) Impact velocity: v (m/s) Propelling force: F (N) Operating cycles per hour: c (/hr) Number of absorbers in parallel: n Ambient temperature: °C

Ordering Example

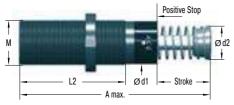
MC3325M-3-LT

	W00020W-0-L					
Self-Compensating	<u>+</u> + + + + +					
33 for 1-1/4-12 UNF or M33 threads						
Stroke 0.91" (25 mm)						
Metric Thread						
(omitted when using thread UNF 1-1/4-12)						
Effective Weight Range Version						
LT = Version for High Temperature Use						

Dimensions						
	Stroke	A max.	d1	d2	L2	М
TYPES	mm	mm	mm	mm	mm	
MC3325-LT	23.2	138	30	25	83	1-1/4-12 UNF / M33x1.5
MC3350-LT	48.6	189	30	25	108	1-1/4-12 UNF / M33x1.5

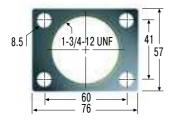
Performance

	Max. Energy	y Capacity		Effective Weigh	t			
	E ₃	E₄	¹ We min.	¹ We max.		² Return Time	³ Side Load Angle max.	Weight
TYPES	Nm/cycle	Nm/h	kg	kg	Hardness	s	٥	kg
MC3325-0-LT	170	75,000	3	11	-0	0.08	4	0.51
MC3325-1-LT	170	75,000	9	40	-1	0.08	4	0.51
MC3325-2-LT	170	75,000	30	120	-2	0.08	4	0.51
MC3325-3-LT	170	75,000	100	420	-3	0.08	4	0.51
MC3325-4-LT	170	75,000	350	1,420	-4	0.08	4	0.51
MC3350-0-LT	330	85,000	5	22	-0	0.16	3	0.63
MC3350-1-LT	330	85,000	18	70	-1	0.16	3	0.63
MC3350-2-LT	330	85,000	60	250	-2	0.16	3	0.63
MC3350-3-LT	330	85,000	240	840	-3	0.16	3	0.63
MC3350-4-LT	330	85,000	710	2,830	-4	0.16	3	0.63

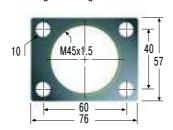

 $^{\rm 1}$ The effective weight range limits can be raised or lowered to special order. $^{\rm 2}$ at -50 $^{\circ}{\rm C}$

³ For applications with higher side load angles please contact ACE.

Industrial Shock Absorbers MC45-LT


Self-Compensating

MC45-LT

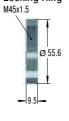


Product available for UNF and metric thread (for metric add suffix -M from part number)

250-0024 **Rectangular Flange**

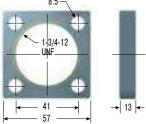
250-0299 **Rectangular Flange**

250-0041


1-3/4-12 UNF

Locking Ring

Ø 57


Products for UNF and metric thread

available

8.5

250-0298 Square Flange

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

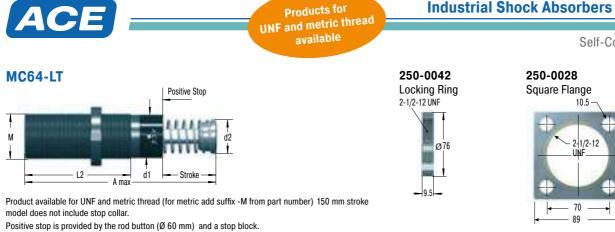
Complete details required when ordering	
Lood to be decelorated, m (kg)	

Load to be decelerated: m (kg) Impact velocity: v (m/s) Propelling force: F (N) Operating cycles per hour: c (/hr) Number of absorbers in parallel: n Ambient temperature: °C

Ordering Example MC4525M-3-LT Self-Compensating 45 for 1-3/4-12 UNF or M45 threads Stroke 0.91" (25 mm) _ Metric Thread (omitted when using thread UNF 1-3/4-12) Effective Weight Range Version LT = Version for High Temperature Use

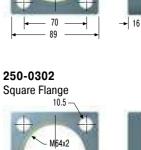
Dimensions

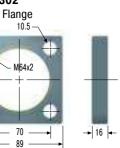
Dimensions						
	Stroke	A max.	d1	d2	L2	М
TYPES	mm	mm	mm	mm	mm	
MC4525-LT	23.1	151	42	35	95	1-3/4-12 UNF / M45x1.5
MC4550-LT	48.5	195	42	35	120	1-3/4-12 UNF / M45x1.5
MC4575-LT	73.9	246	42	35	145	1-3/4-12 UNF / M45x1.5


Performance

i chionnanoc									
	Max. Energy Capacity		Effective Weight						
	E3	E₄	¹ We min.	¹ We max.	Hardness	² Return Time	³ Side Load Angle max.	Weight	
TYPES	Nm/cycle	Nm/h	kg	kg		S	۰	kg	
MC4525-0-LT	370	107,000	7	27	-0	0.08	4	1.13	
MC4525-1-LT	370	107,000	20	90	-1	0.08	4	1.13	
MC4525-2-LT	370	107,000	80	310	-2	0.08	4	1.13	
MC4525-3-LT	370	107,000	260	1,050	-3	0.08	4	1.13	
MC4525-4-LT	370	107,000	890	3,540	-4	0.08	4	1.13	
MC4550-0-LT	740	112,000	13	54	-0	0.16	3	1.36	
MC4550-1-LT	740	112,000	45	180	-1	0.16	3	1.36	
MC4550-2-LT	740	112,000	150	620	-2	0.16	3	1.36	
MC4550-3-LT	740	112,000	520	2,090	-3	0.16	3	1.36	
MC4550-4-LT	740	112,000	1,800	7,100	-4	0.16	3	1.36	
MC4575-0-LT	1,130	146,000	20	80	-0	0.24	2	1.59	
MC4575-1-LT	1,130	146,000	70	270	-1	0.24	2	1.59	
MC4575-2-LT	1,130	146,000	230	930	-2	0.24	2	1.59	
MC4575-3-LT	1,130	146,000	790	3,140	-3	0.24	2	1.59	
MC4575-4-LT	1,130	146,000	2,650	10,600	-4	0.24	2	1.59	
1 71 66 11 11			· · · ·						

 $^{\rm 1}$ The effective weight range limits can be raised or lowered to special order. $^{\rm 2}$ at -50 $^{\circ}{\rm C}$


³ For applications with higher side load angles please contact ACE.


Issue 04.2018 – Specifications subject to change

Ø76

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Complete details required when ordering	Ordering Example	MC6450M-3-LT
Load to be decelerated: m (kg)	Self-Compensating	+ + + + +
Impact velocity: v (m/s)	64 for 2-1/2-12 UNF or M64 threads	
Propelling force: F (N)	Stroke 1.91" (50 mm)	
Operating cycles per hour: c (/hr)	Metric Thread	
Number of absorbers in parallel: n	(omitted when using thread UNF 2-1/2-12)	
Ambient temperature: °C	Effective Weight Range Version	
	LT = Version for High Temperature Use	

Dimensions

StrokeA max.d1d2L2TYPESmmmmmmmm	М
TYPES mm mm mm mm mm	
MC6450-LT 48.6 225 60 48 140 2-	1/2-12 UNF / M64x2
MC64100-LT 99.4 326 60 48 191 2-	1/2-12 UNF / M64x2
MC64150-LT 150 450 60 48 241 2-	1/2-12 UNF / M64x2

Performance

	Max. Energy Capacity		Effective Weight					
TYPES	E ₃ Nm/cycle	E₄ Nm/h	¹ We min. kg	¹ We max. kg	Hardness	² Return Time s	³ Side Load Angle max.	Weight kg
MC6450-0-LT	1,870	146,000	35	140	-0	0.24	4	2.90
MC6450-1-LT	1,870	146,000	140	540	-1	0.24	4	2.90
MC6450-2-LT	1,870	146,000	460	1,850	-2	0.24	4	2.90
MC6450-3-LT	1,870	146,000	1,600	6,300	-3	0.24	4	2.90
MC6450-4-LT	1,870	146,000	5,300	21,200	-4	0.24	4	2.90
MC64100-0-LT	3,730	192,000	70	280	-0	0.68	3	3.70
MC64100-1-LT	3,730	192,000	270	1,100	-1	0.60	3	3.70
MC64100-2-LT	3,730	192,000	930	3,700	-2	0.68	3	3.70
MC64100-3-LT	3,730	192,000	3,150	12,600	-3	0.68	3	3.70
MC64100-4-LT	3,730	192,000	10,600	42,500	-4	0.68	3	3.70
MC64150-0-LT	5,650	248,000	100	460	-0	0.96	2	5.10
MC64150-1-LT	5,650	248,000	410	1,640	-1	0.96	2	5.10
MC64150-2-LT	5,650	248,000	1,390	5,600	-2	0.96	2	5.10
MC64150-3-LT	5,650	248,000	4,700	18,800	-3	0.96	2	5.10
MC64150-4-LT	5,650	248,000	16,000	63,700	-4	0.96	2	5.10

Issue 04.2018 - Specifications subject to change

³ For applications with higher side load angles please contact ACE.

Products for UNF and metric thread available

SC33 to SC45

Piston tube design for maximum energy absorption

Self-Compensating, Piston Tube Technology Energy capacity 155 Nm/Cycle to 680 Nm/Cycle Stroke 23.1 mm to 48.6 mm

True performers: The SC33 to SC45 absorber models are strong and durable by combining the proven sealing technology from the MAGNUM range including membrane accumulator with the well-known piston tube technology from the SC² family. We increase the oil volume to ensure the maximum effective weights. Short stroke lengths of 25 mm to 50mm (.98 in to 1.96 in) deliver shorter braking times in combination with high energy absorption.

These dampers safely and reliably decelerate rotary movements without unwanted recoil effects. Installation close to the pivot point is possible. ACE's generation of piston tube manage low impact speeds with ease. Self-compensating shock absorbers react to changing energy conditions, without adjustment.

These self-compensating industrial shock absorbers can be relied on in industrial, automation and machine engineering. They are used in pivot units, rotary tables, robot arms or integrated wherever decleration is needed.

Rod Button Piston Rod Positive Stop Seals Main Bearing Membrane Accumulator Outer Body **Check Valve** Piston Tube Pressure Chamber with **Metering Orifices** Locking Ring **Return Spring** One-Piece Outer Body without Retaining Ring

Technical Data

Energy capacity: 155 Nm/Cycle to 680 Nm/Cycle

Impact velocity range: 0.02 m/s to 0.46 m/s. Other speeds on request.

Operating temperature range: -12 °C to +66 °C. Other temperatures on request.

Mounting: In any position

Positive stop: Integrated

Material: Outer body: Nitride hardened steel; Piston rod: Hard chrome plated steel; Rod end button: Hardened steel and corrosion-resistant coating; Accessories: Steel with black oxide finish or nitride hardened

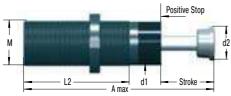
Damping medium: Low temperature hydraulic oil

Application field: Turntables, Swivel units, Robot arms, Linear slides, Pneumatic cylinders, Handling modules, Machines and plants, Finishing and processing centers

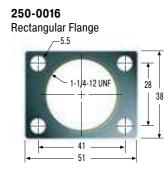
Note: A noise reduction of 3 dB to 7 dB is possible when using the special impact button.

Safety information: External materials in the surrounding area can attack the seal components and lead to a shorter service life. Please contact ACE for appropriate solution suggestions. Do not paint the shock absorbers due to heat emission.

On request: Special oils, mounting inside air cylinders or other special options are available on request.

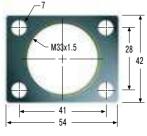


Industrial Shock Absorbers SC33


Self-Compensating, Piston Tube Technology

SC33

Product available for UNF and metric thread (for metric add suffix -M from part number)



250-0292

250-0293 Rectangular Flange

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Ordering Example

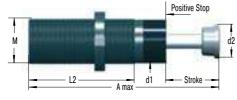
SC3325M-5

Self-Compensating 33 for 1-1/4-12 UNF or M33 threads Stroke 0.98" (25 mm) Metric Thread	
(omitted when using thread UNF 1 1/4-12) Effective Weight Range Version	

Dimensions						
	Stroke	A max.	d1	d2	L2	Μ
TYPES	mm	mm	mm	mm	mm	
SC3325	23.2	178	30	25	122	1-1/4-12 UNF / M33x1.5
SC3350	48.6	254	30	25	173	1-1/4-12 UNF / M33x1.5

Performanc	е									
	Max. Energ	y Capacity	E	Effective Weight						
						Return Force	Return Force		² Side Load Angle	
	E ₃	E₄	¹ We min.	¹ We max.	Hardness	min.	max.	Return Time	max.	Weight
TYPES	Nm/cycle	Nm/h	kg	kg		N	N	S	۰	kg
SC3325-5	155	75,000	1,360	2,721	-5	44	89	0.75	4	0.68
SC3325-6	155	75,000	2,500	5,443	-6	44	89	0.75	4	0.68
SC3325-7	155	75,000	4,989	8,935	-7	44	89	0.75	4	0.68
SC3325-8	155	75,000	8,618	13,607	-8	44	89	0.75	4	0.68
SC3350-5	310	85,000	2,721	4,990	-5	51	125	0.90	3	0.92
SC3350-6	310	85,000	4,536	9,980	-6	51	125	0.90	3	0.92

¹ The effective weight range limits can be raised or lowered to special order. ² For applications with higher side load angles please contact ACE.

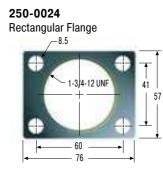


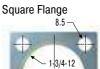
Products for UNF and metric thread available

Self-Compensating, Piston Tube Technology

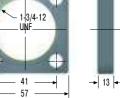
SC45

Product available for UNF and metric thread (for metric add suffix -M from part number)

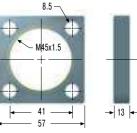

250-0041 Locking Ring 1-3/4-12 UNF Ø 57


250-0297

M45x1.5


Locking Ring

Ø 55.6



250-0023

250-0298 Square Flange

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Ordering Example

250-0299

Rectangular Flange

-10

M45x1.5

60

76

SC4525M-5

Self-Compensating	1	1	1	1 1
45 for 1 3/4-12 UNF or M45 threads				
Stroke 0.98" (25 mm)				
Metric Thread				
(omitted when using thread UNF 1 3/4-12)				
Effective Weight Range Version				

40 57

¥

Dimensions						
	Stroke	A max.	d1	d2	L2	М
TYPES	mm	mm	mm	mm	mm	
SC4525	23.1	189	42	35	139	1-3/4-12 UNF / M45x1.5
SC4550	48.5	265	42	35	190	1-3/4-12 UNF / M45x1.5

Performance	e									
	Max. Energ	y Capacity	Effective Weight							
						Return Force	Return Force		² Side Load Angle	
TYPES	E ₃ Nm/cycle	E ₄ Nm/h	¹ We min. kg	¹ We max. kg	Hardness	min. N	max. N	Return Time s	max.	Weight kg
SC4525-5	340	107,000	3,400	6,800	-5	67	104	0.8	4	1.43
SC4525-6	340	107,000	6,350	13,600	-6	67	104	0.8	4	1.43
SC4525-7	340	107,000	12,700	22,679	-7	67	104	0.8	4	1.43
SC4525-8	340	107,000	20,411	39,000	-8	67	104	0.8	4	1.43
SC4550-5	680	112,000	6,800	12,246	-5	47	242	1.0	3	1.90
SC4550-6	680	112,000	11,790	26,988	-6	47	242	1.0	3	1.90
SC4550-7	680	112,000	25,854	44,225	-7	47	242	1.0	3	1.90

¹ The effective weight range limits can be raised or lowered to special order.

Locate and Eliminate Disturbing Vibration

Vibration isolation

- Free App for iPhone
- Precise 3-axis measurement system
- Simple, understandable menu
- Immediate product recommendations

www.vibrochecker.com

Products for UNF and metric thread available

MA/ML33 to MA/ML64

High energy absorption and progressive adjustment

Adjustable

Energy capacity 170 Nm/Cycle to 6,780 Nm/Cycle Stroke 23.1 mm to 150 mm

Adjustable and unique: These industrial shock absorbers from ACE, which can be precisely adjusted both at the front and rear, also contribute towards the success of the MAGNUM range. Equipped with excellent sealing technology, an annealed guide bearing and integrated positive stop, they are robust and durable.

These dampers absorb 50 % more energy than their predecessors but are built even more compactly. The larger range of effective loads also opens up options in design and assembly. This makes the ML range especially suitable for effective weights of 300 kg to 500,000 kg (661 lbs. to 1,102,311 lbs.). These shocks are the best option wherever application data changes and flexibility is required.

These adjustable industrial shock absorbers are used in all areas of industrial, automation and machine engineering, for gantries and integrated in linear carriages or pivoting units.

Rod Button Piston Rod **Return Spring** Front Adjustment Segment Positive Stop Seals Main Bearing Membrane Accumulator Piston Piston Ring Pressure Chamber with Metering Orifices Adjustment Chamber Outer Body Locking Screw (MA/ML64) One-Piece Outer Body without Retaining Ring **Rear Adjustment Segment**

Technical Data

Energy capacity: 170 Nm/Cycle to 6,780 Nm/Cycle

Impact velocity range: MA: 0.15 m/s to 5 m/s. ML: 0.02 m/s to 0.46 m/s. Other speeds on request.

Operating temperature range: -12 °C to +66 °C. Other temperatures on request.

Mounting: In any position

Positive stop: Integrated

Adjustment: Hard impact at the start of stroke, adjust the ring towards 9 or PLUS. Hard impact at the end of stroke, adjust the ring towards 0 or MINUS.

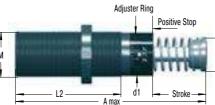
Material: Outer body: Nitride hardened steel; Piston rod: Hard chrome plated steel; Rod end button: Hardened steel and corrosion-resistant coating; Return spring: Zinc plated or plasticcoated steel; Accessories: Steel with black oxide finish or nitride hardened

Damping medium: Automatic Transmission Fluid (ATF)

Application field: Linear slides, Swivel units, Turntables, Portal systems, Machines and plants, Tool machines, Machining centers, Z-axes, Impact panels, Handling modules

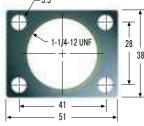
Note: A noise reduction of 3 dB to 7 dB is possible when using the special impact button. For emergency use only applications and for

continous use (with additional cooling) it is sometimes possible to exceed the published max. capacity ratings. In this case, please consult ACE.


Safety information: External materials in the surrounding area can attack the seal components and lead to a shorter service life. Please contact ACE for appropriate solution suggestions. Do not paint the shock absorbers due to heat emission.

On request: Special oils, nickel-plated, increased corrosion protection, mounting inside air cylinders or other special options are available on request.

MA/ML33



Product available for UNF and metric thread (for metric add suffix -M from part number) M33x1.5, M36x1.5 and M42x1.5 also available to order

Industrial Shock Absorbers MA/ML33

Adjustable

250-0292 Locking Ring

M33x1.5

41 54

MA/ML3325M

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Model Type Prefix

Standard Models

MA: Self-Contained with return spring, adjustable

ML: Self-Contained with return spring, adjustable, for lower impact velocity

Special Models

MAA, MLA: Air/Oil return without return spring. Use only with external air/oil tank.

MAS, MLS: Air/Oil Return with return spring. Use only with external air/ oil tank.

MAN, MLN: Self-Contained without return spring

Ordering Example

Adjustable. 33 for 1-1/4-12 UNF or M33 threads Stroke 0.98" (25 mm) Metric Thread (omitted when using thread UNF 1 1/4-12)

Dimensions

Bunononono						
	Stroke	A max.	d1	d2	L2	М
TYPES	mm	mm	mm	mm	mm	
MA3325	23.2	138	30	25	83	1-1/4-12 UNF / M33x1.5
ML3325	23.2	138	30	25	83	1-1/4-12 UNF / M33x1.5
MA3350	48.6	189	30	25	108	1-1/4-12 UNF / M33x1.5
ML3350	48.6	189	30	25	108	1-1/4-12 UNF / M33x1.5

Performance											
		Max. Ene	rgy Capacity		Effectiv	e Weight					
			E4 with Air/Oil	E₄ with Oil			Return Force	Return Force		³ Side Load	
	¹ E ₃	E4	Tank	Recirculation	² We min.	² We max.	min.	max.	Return Time	Angle max.	Weight
TYPES	Nm/cycle	Nm/h	Nm/h	Nm/h	kg	kg	N	N	S	0	kg
MA3325	170	75,000	124,000	169,000	9	1,700	45	90	0.03	4	0.45
ML3325	170	75,000	124,000	169,000	300	50,000	45	90	0.03	4	0.45
MA3350	340	85,000	135,000	180,000	13	2,500	45	135	0.06	3	0.54
ML3350	340	85,000	135,000	180,000	500	80,000	45	135	0.06	3	0.54

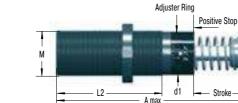
¹ For emergency use only applications it is sometimes possible to exceed the above ratings. Please consult ACE for further details. ² The effective weight range limits can be raised or lowered to special order.

³ For applications with higher side load angles please contact ACE.

MA/ML45

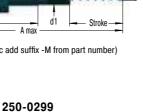
Adjuster

250-0024 Rectangular Flange

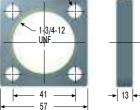

-8.5

1-3/4-12 UNF

60

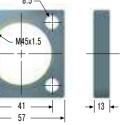

76

Product available for UNF and metric thread (for metric add suffix -M from part number)


57



250-0041 Locking Ring 1-3/4-12 UNF



Rectangular Flange

250-0297 Locking Ring M45x1.5

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Model Type Prefix

Standard Models

MA: Self-Contained with return spring, adjustable

ML: Self-Contained with return spring, adjustable, for lower impact velocity

Special Models

MAA, MLA: Air/Oil return without return spring. Use only with external air/oil tank.

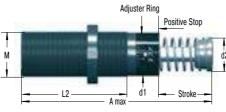
MAS, MLS: Air/Oil Return with return spring. Use only with external air/ oil tank.

MAN, MLN: Self-Contained without return spring

Dimensions						
	Stroke	A max.	d1	d2	L2	М
TYPES	mm	mm	mm	mm	mm	
MA4525	23.1	145	42	35	95	1-3/4-12 UNF / M45x1.5
ML4525	23.1	145	42	35	95	1-3/4-12 UNF / M45x1.5
MA4550	48.5	195	42	35	120	1-3/4-12 UNF / M45x1.5
ML4550	48.5	195	42	35	120	1-3/4-12 UNF / M45x1.5
MA4575	73.9	246	42	35	145	1-3/4-12 UNF / M45x1.5

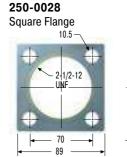
Periormance											
		Max. Ene	rgy Capacity		Effectiv	e Weight					
			E4 with Air/Oil	E₄ with Oil			Return Force	Return Force		³ Side Load	
	¹ E ₃	E₄	Tank	Recirculation	² We min.	² We max.	min.	max.	Return Time	Angle max.	Weight
TYPES	Nm/cycle	Nm/h	Nm/h	Nm/h	kg	kg	N	N	S	۰	kg
MA4525	425	107,000	158,000	192,000	40	10,000	70	100	0.03	4	1.13
ML4525	425	107,000	158,000	192,000	3,000	110,000	70	100	0.03	4	1.13
MA4550	850	112,000	192,000	248,000	70	14,500	70	145	0.08	3	1.36
ML4550	850	112,000	192,000	248,000	5,000	180,000	70	145	0.08	3	1.36
MA4575	1,300	146,000	225,000	282,000	70	15,000	50	180	0.11	2	1.59

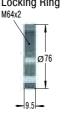
¹ For emergency use only applications it is sometimes possible to exceed the above ratings. Please consult ACE for further details.

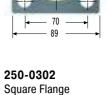

² The effective weight range limits can be raised or lowered to special order.

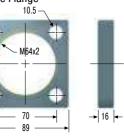
³ For applications with higher side load angles please contact ACE.

MA/ML64




Product available for UNF and metric thread (for metric add suffix -M from part number) 150 mm stroke model does not include stop collar.


Positive stop is provided by the rod button (Ø 60 mm) and a stop block.



250-0301 Locking Ring

MA/ML6450M

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Model Type Prefix

Standard Models

MA: Self-Contained with return spring, adjustable

ML: Self-Contained with return spring, adjustable, for lower impact velocity

Special Models

MAA, MLA: Air/Oil return without return spring. Use only with external air/oil tank.

MAS, MLS: Air/Oil Return with return spring. Use only with external air/ oil tank.

MAN, MLN: Self-Contained without return spring

Ordering Example

	1	-	-	
Adjustable		1	ł	
64 for 2-1/2-12 UNF or M64 threads				
Stroke 1.97" (50 mm)				
Metric Thread				
(omitted when using thread UNF 2-1/2-12)				

Dimensions						
	Stroke	A max.	d1	d2	L2	М
TYPES	mm	mm	mm	mm	mm	
ML6425	23.2	174	60	48	114	2-1/2-12 UNF / M64x2
MA6450	48.6	225	60	48	140	2-1/2-12 UNF / M64x2
ML6450	48.6	225	60	48	140	2-1/2-12 UNF / M64x2
MA64100	99.4	326	60	48	191	2-1/2-12 UNF / M64x2
MA64150	150	450	60	48	241	2-1/2-12 UNF / M64x2

Performance											
		Max. Ene	rgy Capacity		Effectiv	e Weight					
			E4 with Air/Oil	E4 with Oil			Return Force	Return Force		³ Side Load	
	¹ E ₃	E4	Tank	Recirculation	² We min.	² We max.	min.	max.	Return Time	Angle max.	Weight
TYPES	Nm/cycle	Nm/h	Nm/h	Nm/h	kg	kg	N	N	S	0	kg
ML6425	1,135	124,000	248,000	332,000	7,000	300,000	120	155	0.06	5	2.50
MA6450	2,275	146,000	293,000	384,000	220	50,000	90	155	0.12	4	2.90
ML6450	2,275	146,000	293,000	384,000	11,000	500,000	90	155	0.12	4	2.90
MA64100	4,520	192,000	384,000	497,000	270	52,000	105	270	0.34	3	3.70
MA64150	6,780	248,000	497,000	644,000	330	80,000	75	365	0.48	2	5.10
1 Ear amarganov upo	only application	a it in comptim	on nonsible to av	and the above	ratinga Dlagoo	concult ACE fr	r furthar datail	•			

¹ For emergency use only applications it is sometimes possible to exceed the above ratings. Please consult ACE for further details.
² The effective weight range limits can be raised or lowered to special order.

³ For applications with higher side load angles please contact ACE.

Industrial Shock Absorbers MA/ML64

SASL1 1/8

Low velocity and high effective weight range

Adjustable

Energy capacity 900 Nm/Cycle to 1,800 Nm/Cycle Stroke 25 mm to 51 mm

Designed for low velocity, high propelling force applications, SASL shock absorbers are a fixed flange product with a built-in square mount.

SASL industrial shock absorbers can be adjusted and precisely adapted to your requirements; they feature an integrated positive stop and are designed to handle effective weights from 1,800 to 5,400 Nm per cycle.

These adjustable shock absorbers are ideal for all areas of industrial automation and machine engineering applications. They are used in linear slides, tool machines, swivel units or wherever deceleration is needed.

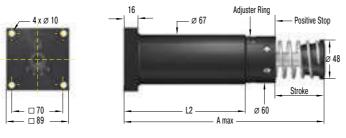
Technical Data

Energy capacity: 900 Nm/Cycle to 1,800 Nm/Cycle

Impact velocity range: 0.08 m/s to 0.61 m/s Operating temperature range: -12 °C to +66 °C

Positive stop: Integrated

Material: Outer body: Nitride hardened steel; Piston rod: Hard chrome plated steel; Rod end button: Hardened steel and corrosion-resistant coating; Return spring: Zinc plated or plastic-coated steel


Damping medium: Automatic Transmission Fluid (ATF)

Application field: Linear slides, Pneumatic cylinders, Swivel units, Handling modules, Machines and plants, Finishing and processing centers, Measuring tables, Tool machines, Machining centers, Locking systems

Safety information: External materials in the surrounding area can attack the seal components and lead to a shorter service life. Please contact ACE for appropriate solution suggestions. Do not paint the shock absorbers due to heat emission.

SASL 1 1/8-R Rear Flange

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Model Type Prefix

SASL: Internal accumulator, spring return

ASLA: Internal accumulator, mechanical return

ASLS: External accumulator, spring return

ASL: External accumulator, air or mechanical return

Ordering Example	SASL11/8x1-R
Adjustable	+ + +
Bore 1 1/8" (28.5 mm)	
Stroke 1" (25 mm)	
Rear Flange	

Dimensions

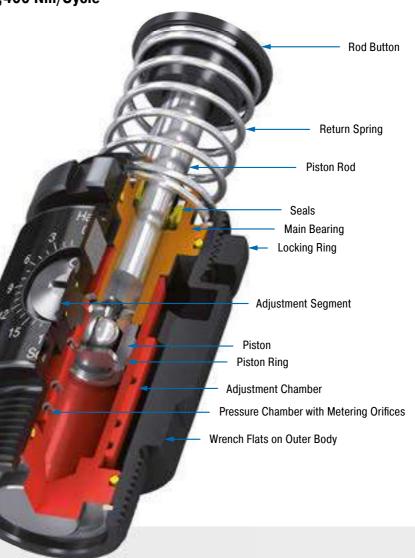
	Stroke	A max.	L2
TYPES	mm	mm	mm
SASL11/8X1-R	23	175	100
SASL11/8X2-R	48.5	225	124

Performance Effective Weight Max. Energy Capacity E₃ Nm/cycle E4 with Air/Oil Tank E₄ 1 We min. ¹ We max. Weight TYPES Nm/h Nm/h kg kg kg SASL11/8X1-R 900 142,000 282,000 318 320,000 3.67 340,000 385.5 590,000 SASL11/8X2-R 1,800 170,000 4.17

¹ The effective weight range limits can be raised or lowered to special order.

SALD1/2 to SALD1 1/8

High energy absorption and a wide effective weight range


Adjustable

Energy capacity 153 Nm/Cycle to 5,400 Nm/Cycle Stroke 25 mm to 152 mm

Ideal for high-speed moving machines, industrial shock absorbers of the SALD product family feature a built-in external positive stop which prevents damage from bottoming out and a positive work-positioning point.

High energy absorption and a wide damping range lead to huge advantages in practice. Alongside generally more compact designs, these small yet very powerful shock absorbers enable full use of the machine's performance.

These adjustable shock absorbers can be adjusted and precisely adapted to your requirements, making them suitable for a variety of applications in industrial automation and machine engineering applications, especially in automation and gantries.

Technical Data

Energy capacity: 153 Nm/Cycle to 5,400 Nm/Cycle

Impact velocity range: 0.3 m/s to 4.6 m/s Operating temperature range: -12 °C to +66 °C

Mounting: In any position

Positive stop: External

Material: Outer body: Nitride hardened steel; Piston rod: Hard chrome plated steel; Rod end button: Hardened steel and corrosion-resistant coating; Return spring: Zinc plated or plasticcoated steel

Damping medium: Automatic Transmission Fluid (ATF)

Application field: Linear slides, Pneumatic cylinders, Swivel units, Handling modules, Machines and plants, Finishing and processing centers, Measuring tables, Tool machines, Machining centers, Locking systems

Safety information: External materials in the surrounding area can attack the seal components and lead to a shorter service life. Please contact ACE for appropriate solution suggestions. Do not paint the shock absorbers due to heat emission.

Issue 04.2018 – Specifications subject to change

SALD1/2-P Primary

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Model Type Prefix

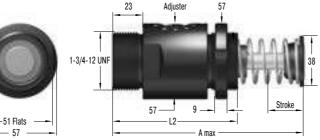
SALD: Internal accumulator, spring return

ALDA: Internal accumulator, mechanical return

ALDS: External accumulator, spring return

ALD: External accumulator, air or mechanical return

Ordering Example	SALD1/2x1-P
Adjustable	+ + +
Bore 1/2" (12.7 mm)	
Stroke 1" (25 mm)	
Primary	


	Stroke	A max.	L2
TYPES	mm	mm	mm
SALD1/2X1-P	23.2	138	82
SALD1/2X2-P	48.5	189	102

		Max. Energy Capa	city	Effectiv	e Weight	
TYPES	E ₃ Nm/cycle	E₄ Nm/h	E ₄ with Air/Oil Tank Nm/h	¹ We min. kg	¹ We max. kg	Weight kg
SALD1/2X1-P	153	85,000	147,000	4.5	1,225	0.68
SALD1/2X2-P	305	98.000	158,000	9.5	2,585	0.83

ts can be raised or lowered to sp

SALD3/4-P Primary

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Model Type Prefix

SALD: Internal accumulator, spring return ALDA: Internal accumulator, mechanical return ALDS: External accumulator, spring return ALD: External accumulator, air or mechanical return


Ordering Example	SALD3/4x1-P
Adjustable Bore 3/4" (19 mm) Stroke 1" (25 mm) Primary	

Dimensions			
	Stroke	A max.	L2
TYPES	mm	mm	mm
SALD3/4X1-P	23.2	151	101
SALD3/4X2-P	48.5	202	126
SALD3/4X3-P	74	252	152

Performance						
		Max. Energy Capa	city	Effectiv	e Weight	
	E ₃	E₄	E₄ with Air/Oil Tank	¹ We min.	¹ We max.	Weight
TYPES	Nm/cycle	Nm/h	Nm/h	kg	kg	kg
SALD3/4X1-P	340	124,000	181,000	9	8,100	1.47
SALD3/4X2-P	680	147,000	225,000	15.9	14,500	1.81
SALD3/4X3-P	1,000	181,000	2,700,000	22.7	21,000	2.24
¹ The effective weight	t range limits can be raised	or lowered to special ord	ler.			

SALD1 1/8-P Primary

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Model Type Prefix

SALD: Internal accumulator, spring return

ALDA: Internal accumulator, mechanical return

ALDS: External accumulator, spring return

ALD: External accumulator, air or mechanical return

Ordering Example	SALD3/4x1-P
Adjustable	+ + +
Bore 1 1/8" (28.5 mm)	
Stroke 1" (25 mm)	
Primary	

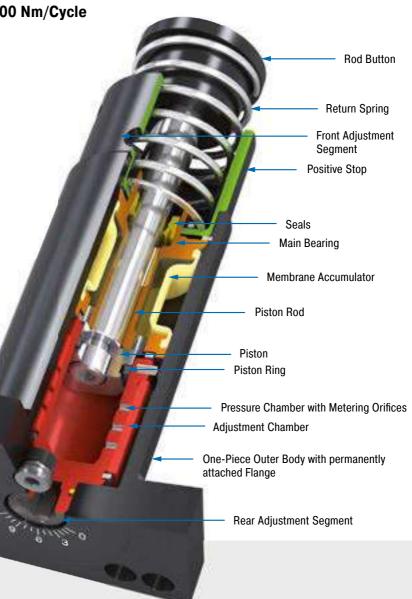
Dimensions			
	Stroke	A max.	L2
TYPES	mm	mm	mm
SALD11/8X2-P	48.5	226	140
SALD11/8X4-P	99	327	190
SALD11/8X6-P	150	451	241

Performance Max. Energy Capacity Effective Weight E₄ with Air/Oil Tank **Nm/h** ¹ We min. E₃ Nm/cycle Weight ¹ We max. E4 TYPES Nm/h kg kg kg SALD11/8X2-P 340,000 22,700 3.97 1,800 170,000 54 SALD11/8X4-P 3,600 225,000 452,000 72.5 45,000 5.22 565,000 68,000 SALD11/8X6-P 7.04 5,400 280,000 91 ¹ The effective weight range limits can be raised or lowered to special order.

Issue 04.2018 - Specifications subject to change

SALDN3/4

High energy absorption and a wide effective weight range


Adjustable

Energy capacity 390 Nm/Cycle to 1,200 Nm/Cycle Stroke 25 mm to 76 mm

SALDN industrial shock absorbers offer high performance levels and a long service life, even in the most difficult environments. These shock absorbers feature an integrated positive stop and are designed to handle effective weights from 390 to 1,200 Nm per cycle.

High energy absorption in a compact design and a wide damping range lead to huge advantages in practice. Alongside generally more compact designs, these small yet very powerful shock absorbers enable full use of the machine's performance.

These adjustable shock absorbers can be adjusted and precisely adapted to your requirements, making them suitable for a variety of applications in industrial automation and machine engineering applications, especially in automation and gantries.

Technical Data

Energy capacity: 390 Nm/Cycle to 1,200 Nm/Cycle

Impact velocity range: 0.1 m/s to 5 m/s Operating temperature range: -12 °C to +66 °C

Mounting: In any position

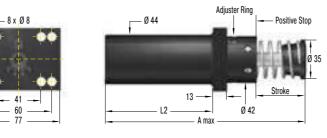
Positive stop: Integrated

Adjustment: Rear of shock

Damping medium: Automatic Transmission Fluid (ATF)

Application field: Linear slides, Pneumatic cylinders, Swivel units, Handling modules,

Machines and plants, Finishing and processing centers, Measuring tables, Tool machines, Machining centers, Locking systems


Note: ACE recommends selecting a model with 20 % more capacity than your calculations indicate necessary. This extra capacity allows for changes in weight, velocity or cycle rates increase in the future.

Safety information: External materials in the surrounding area can attack the seal components and lead to a shorter service life. Please contact ACE for appropriate solution suggestions. Do not paint the shock absorbers due to heat emission.

On request: Special oils, nickel-plated, increased corrosion protection, mounting inside air cylinders, additional impact velocity ranges or other special options are available on request.

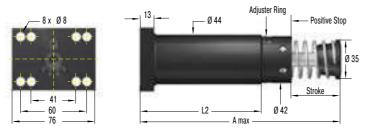
SALDN3/4-RF Front Flange

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Model Type Prefix

SALDN: Internal accumulator, spring return ALDAN: Internal accumulator, mechanical return ALDSN: External accumulator, spring return ALDN: External accumulator, air or mechanical return

Ordering Example	SALDN3/4x1-RF
Adjustable	• • • • •
Bore 3/4" (19 mm)	
Stroke 1" (25 mm) Series (RF = Front Flange)	


Dimensions			
	Stroke	A max.	L2
TYPES	mm	mm	mm
SALDN3/4X1-RF	25	145	82
SALDN3/4X2-RF	50	195	107
SALDN3/4X3-RF	75	246	133

Max	. Energy Capa	acity	Effectiv	e Weight					
		E₄ with Air/Oil			Return Force	Return Force	:	Side Load Angle	
E,	E₄	Tank	¹ We min.	¹ We max.	min.	max.	Return Time	max.	Weight
Nm/cycle	Nm/h	Nm/h	kg	kg	N	N	S	۰	kg
390	107,000	158,000	45	10,000	7	10	0.03	4	1.13
780	113,000	190,000	72.6	14,500	7	14.5	0.08	3	1.37
1,200	147,000	226,000	115	15,000	5	18.25	0.11	2	1.59
	E₃ Nm/cycle 390 780	E ₃ E ₄ Nm/cycle Nm/h 390 107,000 780 113,000	E ₃ E ₄ Tank Nm/cycle Nm/h Nm/h 390 107,000 158,000 780 113,000 190,000	E4 with Air/Oil E3 E4 Tank ' We min. Nm/cycle Nm/h Nm/h kg 390 107,000 158,000 45 780 113,000 190,000 72.6	E4 with Air/Oil 'We min. We max. Nm/cycle Nm/h Nm/h kg kg 390 107,000 158,000 45 10,000 780 113,000 190,000 72.6 14,500	E4 with Air/Oil Return Force E3 E4 Tank ¹ We min. ¹ We max. min. Nm/cycle Nm/h Nm/h kg kg N 390 107,000 158,000 45 10,000 7 780 113,000 190,000 72.6 14,500 7	E4 with Air/Oil Return Force Return Force Return Force Return Force Min. E3 E4 Tank ¹ We min. ¹ We max. min. max. Nm/cycle Nm/h Nm/h kg kg N N 390 107,000 158,000 45 10,000 7 10 780 113,000 190,000 72.6 14,500 7 14.5	E ₄ with Air/Oil Return Force Return Force Return Force E ₃ E ₄ Tank 'We min. 'We max. min. max. Return Time Nm/cycle Nm/h Nm/h kg kg N N s 390 107,000 158,000 45 10,000 7 10 0.03 780 113,000 190,000 72.6 14,500 7 14.5 0.08	E4 with Air/Oil Return Force Return Force Return Force Side Load Angle E3 E4 Tank ¹ We min. ¹ We max. min. max. Return Time max. Nm/cycle Nm/h Nm/h kg kg N N S ° 390 107,000 158,000 45 10,000 7 10 0.03 4 780 113,000 190,000 72.6 14,500 7 14.5 0.08 3

¹ The effective weight range limits can be raised or lowered to special order.

SALDN3/4-RR Rear Flange

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Model Type Prefix

SALDN: Internal accumulator, spring return ALDAN: Internal accumulator, mechanical return ALDSN: External accumulator, spring return ALDN: External accumulator, air or mechanical return

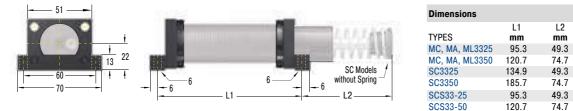
Dimensions			
	Stroke	A max.	L2
TYPES	mm	mm	mm
SALDN3/4X1-RR	25	145	82
SALDN3/4X2-RR	50	195	107
SALDN3/4X3-RR	75	246	133

Performance										
	Мах	. Energy Cap	acity	Effectiv	e Weight					
			E₄ with Air/Oil			Return Force	Return Force		Side Load Angle	
	E ₃	E₄	Tank	¹ We min.	¹ We max.	min.	max.	Return Time	max.	Weight
TYPES	Nm/cycle	Nm/h	Nm/h	kg	kg	N	N	S	۰	kg
SALDN3/4X1-RR	390	107,000	158,000	43	10,000	7	10	0.03	4	1.13
SALDN3/4X2-RR	780	113,000	190,000	72.6	14,500	7	14.5	0.08	3	1.37
SALDN3/4X3-RR	1,200	147,000	226,000	115	15,000	5	18.25	0.11	2	1.59
¹ The effective weight	¹ The effective weight range limits can be raised or lowered to special order.									

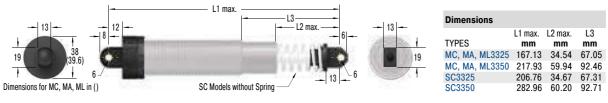
High Performance for PET Stretch Blow Machines

PET 20 and PET 27

20 million cycles – up to 107 °C – aluminium outer body hardened pressure chamber – corrosion protection


extended service life – low-wear – faster reduced downtime – improved system performance increased production volume – high cost efficiency

For all information see our Website www.acecontrols.com


M33x1.5

250-0294 Side Foot Mounting Kit

250-0294 = 1 locknut, 2 flanges, 2 bars, 4 screws M6x40, DIN 912 Torque max.: 11 Nm Clamping torque: 90 Nm Bolts to mount assembled shock & mount not included.

250-0323 Clevis Mount Assembly

Use positive stop at both ends of travel.

250-0292 Locking Ring M33x1.5

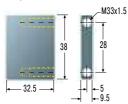
ø 39.6

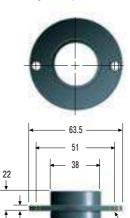
Ø 29.2

A max 13.2 see shock absorber dims Supplied ready mounted onto the shock absorber.

250-0293 **Rectangular Flange**

250-0130 Steel Shroud ¹ A max 198 Ø 15 Ø 36 50 - 61.5 Stroke

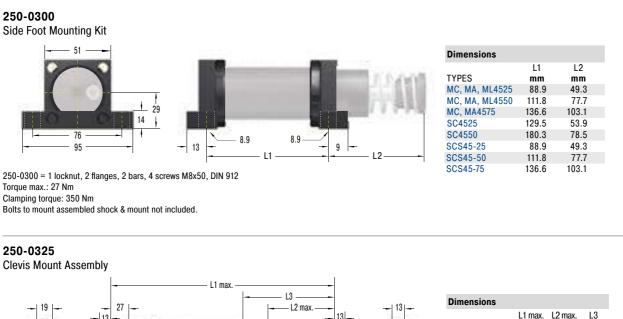

¹ Total installation length of the shock absorber inc. steel shroud

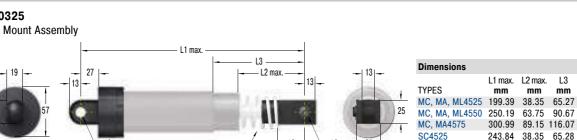

¹ Total installation length of the shock absorber inc. steel shroud

250-0427 Stop Bar

-6.5

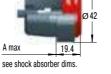
250-0071 Flanged Stop Collar


51


Mounting, installation, ... see page 96.

-M33x1.5

M45x1.5

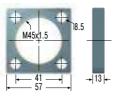

18

Use positive stop at both ends of travel.

250-0297 Locking Ring M45x1.5

250-0092 Poly Button

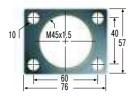
Supplied ready mounted onto the shock absorber.


SC Models without Spring

10

25

SC4550


250-0299 **Rectangular Flange**

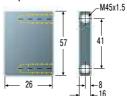
320.04 63.75 90.68

mm

65.27

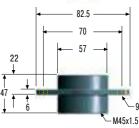
90.67

¹ Total installation length of the shock absorber inc. steel shroud 250-0731 Steel Shroud 1 A max 154 Ø 20 Ø 48

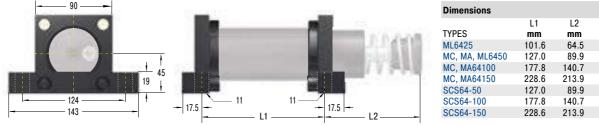

25

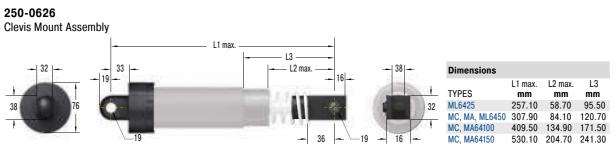
Stroke

¹ Total installation length of the shock absorber inc. steel shroud


-37

250-0073 Flanged Stop Collar





M64x2

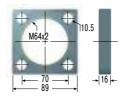
250-0304 Side Foot Mounting Kit

250-0304 = 1 locknut, 2 flanges, 2 bars, 4 screws M10x80, DIN 912 Torque max.: 50 Nm Clamping torque: 350 Nm Bolts to mount assembled shock & mount not included.

Use positive stop at both ends of travel.

250-0301 Locking Ring

Ø76


M64x2

250-0093 Poly Button

see shock absorber dims. Supplied ready mounted onto the shock absorber.

250-0302 Square Flange

¹ Total installation length of the shock absorber inc. steel shroud

¹ Total installation length of the shock absorber inc. steel shroud

25

Stroke

-40

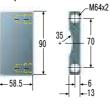
250-0839

Steel Shroud

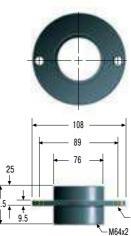
¹ A max 184.5

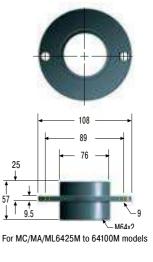
Ø 30

Ø 67


250-0640 Stop Bar

9.5

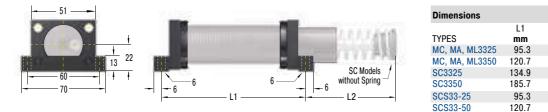

For MC/MA/ML6425M to 64100M models


For MC/MA/ML64150M model

250-0077 Flanged Stop Collar

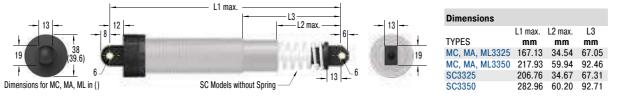
For MC/MA/ML64150M model

250-0075 Flanged Stop Collar



1-1/4-12 UNF

250-0015

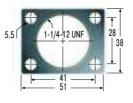

Side Foot Mounting Kit

250-0015 = 1 locknut, 2 flanges, 2 bars, 4 screws 1-1/4-12 UNF, DIN 912 Torque max .: 11 Nm Clamping torque: 90 Nm Bolts to mount assembled shock & mount not included.

250-0225

Clevis Mount Assembly

Use positive stop at both ends of travel.


250-0038 250-0091 Poly Button Locking Ring

Supplied ready mounted onto the shock absorber.

250-0016 **Rectangular Flange**

250-0426

38

<u></u> ←5 ←9.5

Stop Bar

32.5

250-0130 Steel Shroud

-10-32 UNF

28

¹ Total installation length of the shock absorber inc. steel shroud

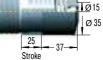
250-0730 Steel Shroud

L2

mm

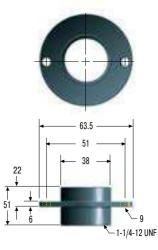
49.3

74.7

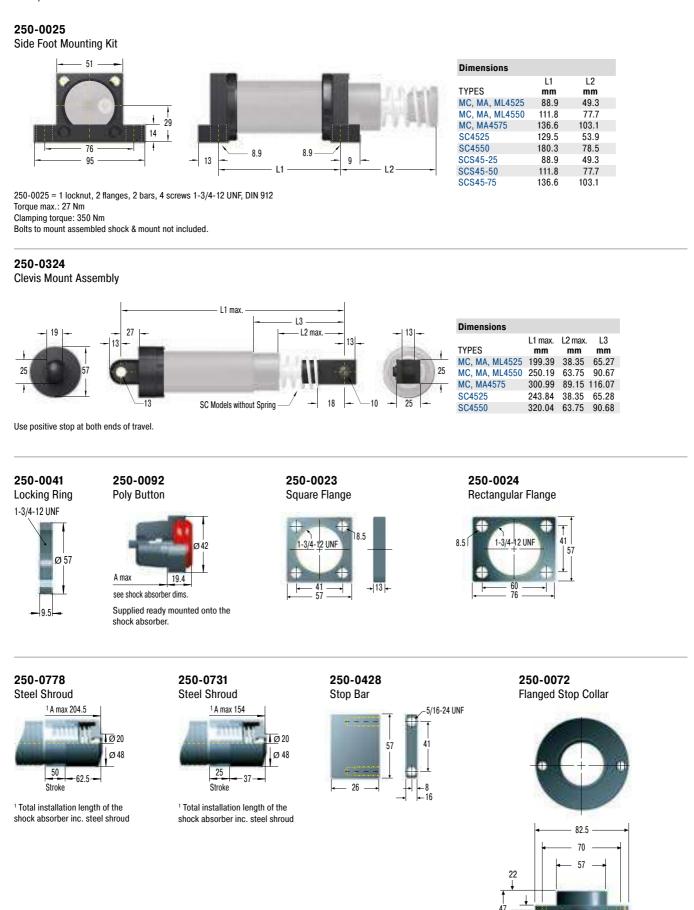

49.3

74.7

49.3

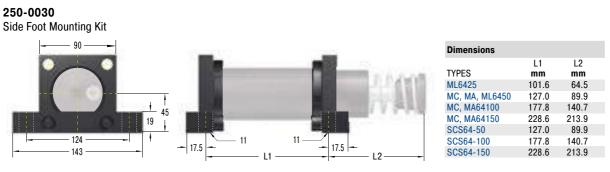

74.7

1 A max 148

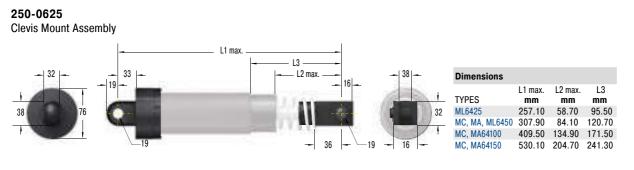

¹ Total installation length of the shock absorber inc. steel shroud

250-0070 Flanged Stop Collar

1-3/4-12 UNF


Issue 04.2018 - Specifications subject to change

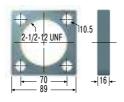
____9 ___1-3/4-12 UNF


Mounting, installation, ... see page 96.

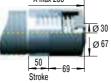
2-1/2-12 UNF

250-0030 = 1 locknut, 2 flanges, 2 bars, 4 screws 2-1/2-12 UNF, DIN 912 Torque max.: 50 Nm Clamping torque: 50 Nm Bolts to mount assembled shock & mount not included.

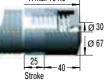
Use positive stop at both ends of travel.


250-0042 Locking Ring 2-1/2-12 UNF

Ø76

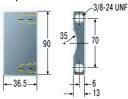

250-0093 Poly Button

see shock absorber dims. Supplied ready mounted onto the shock absorber. 250-0028 Square Flange



250-0787 Steel Shroud ¹ A max 236

¹ Total installation length of the shock absorber inc. steel shroud

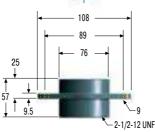

250-0839 Steel Shroud ¹ A max 184.5

¹ Total installation length of the shock absorber inc. steel shroud

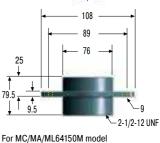
250-0430 Stop Bar

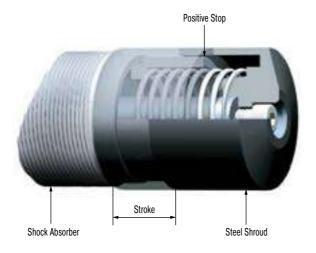
9.5

For MC/MA/ML6425 to 64100 models


250-0432 Stop Bar

For MC/MA/ML64150 models


250-0074 Flanged Stop Collar


For MC/MA/ML 6425 to 64100 models

250-0076 Flanged Stop Collar

Issue 04.2018 – Specifications subject to change

Steel Shroud

For industrial shock absorbers with a 25 or 50 mm stroke.

Grinding beads, sand, welding splatter, paints and adhesives etc. can adhere to the piston rod. They then damage the rod seals and the shock absorber quickly fails. In many cases the installation of the optional steel shroud can provide worthwhile protection and increase lifetime.

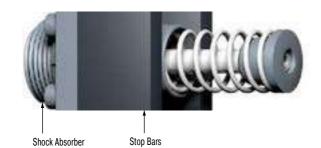
Material

Hardened high tensile steel

Mounting information

To mount the steel shroud it's necessary to remove the rod end button of the shock absorber.

Safety information


When installing don't forget to allow operating space for the shroud to move as the shock absorber is cycled.

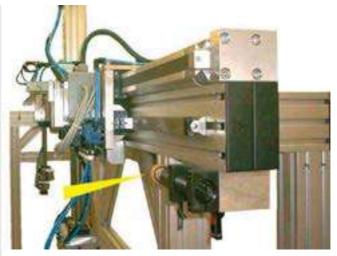
Flanged Stop Collar

Flanged stop collars provide industrial shock absorbers with a secure front mount and a positive mechanical stop. No specific mounting panel thickness is required.

Material Hardened high tensile steel

Stop Bar

Stop bars are used in pairs and come two per package for assembly. Hard metric stop bars are aviailable upon request.


Material Hardened high tensile steel

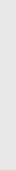
Application Examples

MC33

Quicker, gentle positioning

ACE industrial shock absorbers optimize portals for machine loading and increase productivity. This device is driven by piston rodless pneumatic cylinders where two gripper slides are moving independently of each other at speeds of 2 to 2.5 m/sec., is equipped with industrial shock absorbers as brake systems. Their function is to stop a mass of 25 kg up to 540 times per hour. The MC3350-1-S model was chosen for this application, allowing easy and extremely accurate adjustment of the end positions of the adjustable limit stops. In comparison to brake systems with other function principles, shock absorbers allow higher travel speeds and shorter cycle sequences.

Industrial shock absorbers optimize portal operation



MC45 MAGNUM protection of carriage construction

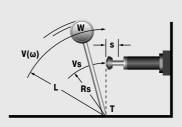
Serving a similar purpose, several ACE dampers are installed in Jada, the triple-axis, free-moving badminton robot. In order for the badminton robot to be capable of playing, it must be able to change direction in the shortest time possible. Jada is designed therefore to brake at a maximum of 30 m/s². For this task, linear modules are limited by the use of industrial shock absorbers of the type MC4575-0. Miniature shock absorbers and profile dampers are also installed at the location of the "racket hand". In all cases, the modern ACE machine elements serve to protect the end positions of the construction.

A variety of different dampers are used to slow the rapid movements of a badminton robot FMTC vzw, 3001 Leuven, Belgium

Application Examples

MC64-VA MAGNUM damper for safety under water

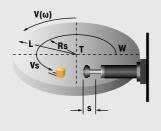
A pipeline from the rig to the well head that is as flexible as possible is considered to be a quick-disconnect connection in an emergency. Nevertheless, this connection made at the oil source on the sea floor is an Achilles heel. If the connection snaps or if it cannot be separated quickly enough during hazards such as storms, unpredictable, often serious consequences can hardly be prevented. With the so-called XR connector, the safety at this critical point is significantly increased. In the innovative design 10 industrial shock absorbers per connection from the MAGNUM series from ACE master this important task.

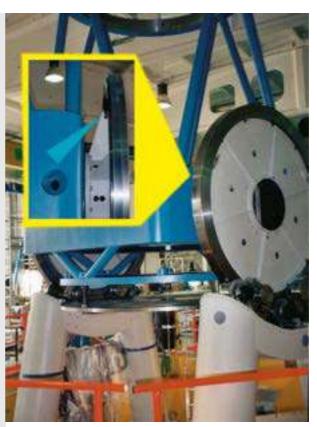

MAGNUMS allow for emergency quick disconnection of the pipelines from the oil rigs Subsea Technologies Ltd, Aberdeen, AB12 3AY, UK

MC64M

Emergency exits made safer with MAGNUM shock absorbers

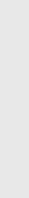
MAGNUM 64150 industrial shock absorbers are integrated into the overall safety design for the Amsterdam metro system. In contrast to previous solutions, ACE shocks ensure rapid opening and stopping for a five-ton barrier located at the end of an emergency escape route. In this application, over 5,100 Nm of energy are able to be absorbed per stroke. Through installing shock absorbers in end positions of the design, over 63,700 kg of effective weight are able to be absorbed. ACE provided an excellent solution, even with an impact speed of approximately 1.8 meters per second and the barrier exit grille at an unusual impact angle.

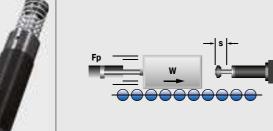

A heavy, five-ton barrier safely stopped by MAGNUM shock absorbers J.P. van Eesteren B.V., 1006 BD Amsterdam, Netherlands



MA/ML33 Safe swiveling

ACE industrial shock absorbers offer safety to spare for swiveling or braking of large telescope. The optical system of this telescope for special observations is moveable in two space coordinates. The structure in which the telescope is mounted weighs 15,000 kg and consists of a turntable with drives and two wheel disks rotating on bearings. It enables a rotation by $\pm 90^{\circ}$ from horizon to horizon. To safeguard the telescope in case of overshooting the respective swiveling limits, ML3325 industrial shock absorbers are used as braking elements. Should the telescope inadvertently overshoot the permissible swivel range, they will safely damp the travel of the valuable telescope.




Perfect overshoot protection for precision telescope

MA/ML64 MAGNUM helps in the fight against people not buckling up

The Central-Hessian police department has developed an accident simulator with the help of ACE Stoßdämpfer GmbH aimed at significantly increasing the number of road traffic seatbelt wearers. The mobile simulator demonstrates strikingly that the smallest impact velocities lead to enormous forces, even when wearing seat belts, and can cause serious injuries when not. Adjustable MAGNUM type MA64150 dampers are installed to protect the simulator passengers and the end points of the construction at various speeds and moving masses. These are the largest adjustable dampers of the ACE product range; stronger special constructions are possible at any time.

Issue 04.2018 - Specifications subject to change

MAGNUM dampers ensure the reliable braking of moving masses on the seat and the protection of the entire carriage construction Central Hessian Police Department, Karl-Glöckner-Straße 2, 35394 Gießen, Germany

Heavy Industrial Shock Absorbers

Effective shock absorption for heavy loads

The heavy industrial shock absorbers from ACE top off the company's offerings in damping technology. This ACE category gives Designers a choice between self-compensating and adjustable machine elements.

Whichever design is chosen, this type of shock absorber impresses with its robustness and operational readiness wherever heavy loads need to be reliably stopped on-the-spot and at a precise point.

The CA4 models can absorb up to 126,500 Nm of energy. The series of heavy duty, self-compensating "CA" types are equally suitable for use as an emergency stop as are the adjustable types with the designations "A". The range of effective loads covered is increased considerably for this purpose.

Heavy Industrial Shock Absorbers

THE

CA2 to CA4

Self-Compensating Deceleration of heavy loads Portal systems, Machines and plants, Conveyor systems, Crane systems

A1 1/2 to A3

Adjustable Deceleration of heavy loads and progressive adjustment Portal systems, Machines and plants, Conveyor systems, Crane systems Page 102

Page 106

Rugged and powerful

Gently stops heavy loads with high precision

Also ideal for emergency stop utilization

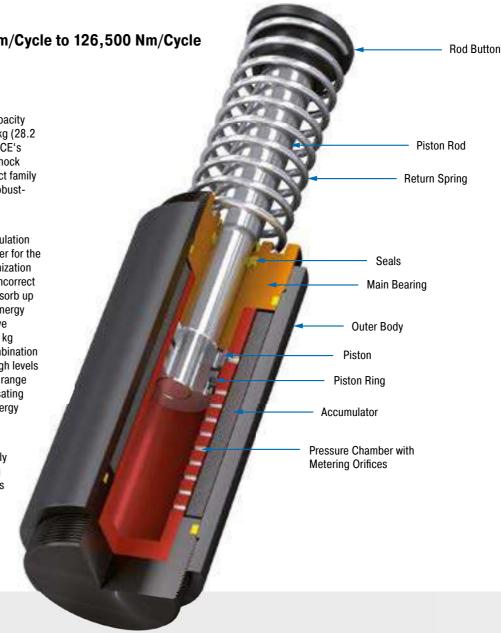
Safe, reliable production

Maintenance-free and ready-to-install

Special versions available

CA2 to CA4

Deceleration of heavy loads


Self-Compensating

Energy capacity 3,600 Nm/Cycle to 126,500 Nm/Cycle Stroke 50 mm to 406 mm

Powerful: The weight of these high capacity absorbers are between 12.8 and 146 kg (28.2 lbs and 322 lbs.). They complement ACE's product range of self-compensating shock absorbers. All models from this product family are designed for applications where robustness and large energy absorption are important.

ACE uses our proprietary custom calculation program to design each shock absorber for the specific customer application. Customization helps reduce the risk of crashes and incorrect product sizing. The CA models can absorb up to 126,500 Nm (1,119,620 in-lbs) of energy and can be used in the area of effective weights between 700 kg and 326,000 kg (1,543 lbs and 718,707 lbs.). The combination of being extremely solid, absorbing high levels of energy and having a large damping range makes them invaluable. Self-compensating shock absorbers react to changing energy conditions, without adjustment.

These heavy duty self-compensating industrial shock absorbers are primarily used in heavy mechanical engineering e.g. on lift bridges and steel structures or for damping sluice systems.

Technical Data

Energy capacity: 3,600 Nm/Cycle to 126,500 Nm/Cycle

Impact velocity range: 0.3 m/s to 5 m/s. Other speeds on request.

Operating temperature range: -12 °C to +66 °C. Other temperatures on request.

Mounting: In any position

Positive stop: External positive stops 2.5 mm to 3 mm before the end of stroke provided by the customer.

Material: Outer body: Steel corrosion-resistant coating; Piston rod: Hard chrome plated steel; Rod end button: Hardened steel and corrosion-resistant coating; Return spring: Zinc plated steel

Damping medium: Automatic Transmission Fluid (ATF)

Application field: Portal systems, Machines and plants, Conveyor systems, Crane systems, Loading and lifting equipment, Shelf storage systems, Heavy load applications, Swivel units

Note: For emergency use only applications and for continous use it is possible to exceed the published max. capacity ratings. In this case, please consult ACE.

Safety information: External materials in the surrounding area can attack the seal components and lead to a shorter service life. Please contact ACE for appropriate solution suggestions. Do not paint the shock absorbers due to heat emission.

On request: Special oils, nickel-plated, increased corrosion protection or other special options are available on request.

Model Type Prefix

CA: Self-contained with return spring,

CAA: Air/Oil return without return spring.

CSA: Air/Oil return with return spring. Use only with external air/oil tank.

CNA: Self-Contained without return spring

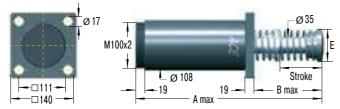
Use only with external air/oil tank.

Standard Models

self-compensating

Special Models

Self-Compensating

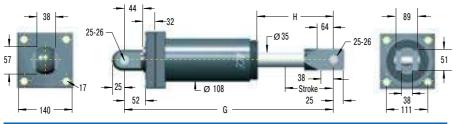

-Ø35

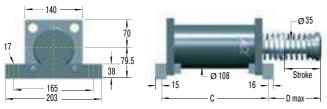
111

Stroke

B max

CA2-F Front Flange




CA2-R Rear Flange

103

CA2-C Clevis Mount

CA2-S 2" Bore Foot Mount

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Dimensie

Dimensions						
	Stroke	A max.	B max.	С	D max.	E
TYPES	mm	mm	mm	mm	mm	mm
CA2X2	50	313	110	173	125	70
CA2X4	102	414	160	224	175	70
CA2X6	152	516	211	275	226	70
CA2X8	203	643	287	326	302	92
CA2X10	254	745	338	377	353	108

Performar	nce										
	Max. Energy Capacity			Ef	fective Weig	ht					
			² E ₄ with Air/Oil				Return Force	Return Force		Side Load Angle	
	¹ E ₃	² E ₄	Tank	³ We min.	³ We max.	Hardness	min.	max.	Return Time	max.	Weight
TYPES	Nm/cycle	Nm/h	Nm/h	kg	kg		N	N	S	0	kg
CA2X2-1	3,600	1,100,000	1,350,000	700	2,200	-1	210	285	0.25	3	12.8
CA2X2-2	3,600	1,100,000	1,350,000	1,800	5,400	-2	210	285	0.25	3	12.8
CA2X2-3	3,600	1,100,000	1,350,000	4,500	13,600	-3	210	285	0.25	3	12.8
CA2X2-4	3,600	1,100,000	1,350,000	11,300	34,000	-4	210	285	0.25	3	12.8
CA2X4-1	7,200	1,350,000	1,700,000	1,400	4,400	-1	150	285	0.50	3	14.8
CA2X4-2	7,200	1,350,000	1,700,000	3,600	11,000	-2	150	285	0.50	3	14.8
CA2X4-3	7,200	1,350,000	1,700,000	9,100	27,200	-3	150	285	0.50	3	14.8
CA2X4-4	7,200	1,350,000	1,700,000	22,600	68,000	-4	150	285	0.50	3	14.8
CA2X6-1	10,800	1,600,000	2,000,000	2,200	6,500	-1	150	400	0.60	3	16.9
CA2X6-2	10,800	1,600,000	2,000,000	5,400	16,300	-2	150	400	0.60	3	16.9
CA2X6-3	10,800	1,600,000	2,000,000	13,600	40,800	-3	150	400	0.60	3	16.9
CA2X6-4	10,800	1,600,000	2,000,000	34,000	102,000	-4	150	400	0.60	3	16.9
CA2X8-1	14,500	1,900,000	2,400,000	2,900	8,700	-1	230	650	0.70	3	19.3
CA2X8-2	14,500	1,900,000	2,400,000	7,200	21,700	-2	230	650	0.70	3	19.3
CA2X8-3	14,500	1,900,000	2,400,000	18,100	54,400	-3	230	650	0.70	3	19.3
CA2X8-4	14,500	1,900,000	2,400,000	45,300	136,000	-4	230	650	0.70	3	19.3
CA2X10-1	18,000	2,200,000	2,700,000	3,600	11,000	-1	160	460	0.80	3	22.8
CA2X10-2	18,000	2,200,000	2,700,000	9,100	27,200	-2	160	460	0.80	3	22.8
CA2X10-3	18,000	2,200,000	2,700,000	22,600	68,000	-3	160	460	0.80	3	22.8
CA2X10-4	18,000	2,200,000	2,700,000	56,600	170,000	-4	160	460	0.80	3	22.8

¹ For emergency use only applications it is sometimes possible to exceed the above ratings. Please consult ACE for further details.

² Figures for oil recirculation systems on request.

³ The effective weight range limits can be raised or lowered to special order.

Ordering Example

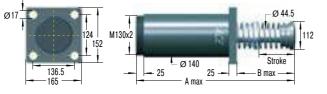
CA2x4F-3

Self-Compensating Bore Size Ø 2" Stroke Length 4" (102 mm)	↑ ↑ ↑
Front Flange Mounting	
Effective Weight Range Version	

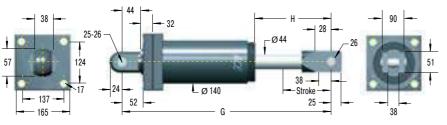
Ø 44.5

112

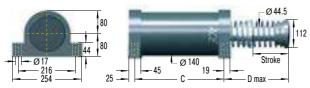
CA3x5-3F


1111

Stroke


B max

Self-Compensating


CA3-F Front Flange

CA3-C Clevis Mount

CA3-S Foot Mount

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

CA3-R Rear Flange

136.5

165

M130x2

- Ø 140 25

A max

25

124

152

Ø17

Model Type Prefix

Standard Models

CA: Self-contained with return spring, self-compensating **Special Models**

CAA: Air/Oil return without return spring. Use only with external air/oil tank. CNA: Self-Contained without return spring

CSA: Air/Oil return with return spring. Use only with external air/oil tank.

Dimensions					
	Stroke	A max.	B max.	С	D max.
TYPES	mm	mm	mm	mm	mm
CA3X5	127	490.5	211	254	224
CA3X8	203	641	286	330	300
CA3X12	305	890	434	432	447

Ordering Example

Self-Compensating

Stroke Length 5" = 127 mm

Front Flange Mounting

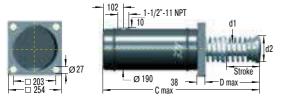
Effective Weight Range Version

Bore Size Ø 3"

Dorformance

	Ma	Max. Energy Capacity			Effective Weight						
	1 E,	² E ₄	² E ₄ with Air/Oil Tank	³ We min.	³ We max.	Hardness	Return Force min.	Return Force max.	Return Time	Side Load Angle max.	Weight
TYPES	Nm/cycle	Nm/h	Nm/h	kg	kg	naraness	N	N N	S	•	kg
CA3X5-1	14,125	2,260,000	2,800,000	2,900	8,700	-1	270	710	0.6	3	28.9
CA3X5-2	14,125	2,260,000	2,800,000	7,250	21,700	-2	270	710	0.6	3	28.9
CA3X5-3	14,125	2,260,000	2,800,000	18,100	54,350	-3	270	710	0.6	3	28.9
CA3X5-4	14,125	2,260,000	2,800,000	45,300	135,900	-4	270	710	0.6	3	28.9
CA3X8-1	22,600	3,600,000	4,520,000	4,650	13,900	-1	280	740	0.8	3	33.4
CA3X8-2	22,600	3,600,000	4,520,000	11,600	34,800	-2	280	740	0.8	3	33.4
CA3X8-3	22,600	3,600,000	4,520,000	29,000	87,000	-3	280	740	0.8	3	33.4
CA3X8-4	22,600	3,600,000	4,520,000	72,500	217,000	-4	280	740	0.8	3	33.4
CA3X12-1	33,900	5,400,000	6,780,000	6,950	20,900	-1	270	730	1.2	3	40.6
CA3X12-2	33,900	5,400,000	6,780,000	17,400	52,200	-2	270	730	1.2	3	40.6
CA3X12-3	33,900	5,400,000	6,780,000	43,500	130,450	-3	270	730	1.2	3	40.6
CA3X12-4	33,900	5,400,000	6,780,000	108,700	326,000	-4	270	730	1.2	3	40.6

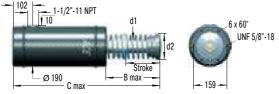
¹ For emergency use only applications it is sometimes possible to exceed the above ratings. Please consult ACE for further details.


² Figures for oil recirculation systems on request.

³ The effective weight range limits can be raised or lowered to special order.

Self-Compensating

CA4-F Front Flange



CA4-R Rear Flange

63

CA4-FRP 6 Tapped Holes, Primary Mounting

59

57

min


max

L1

L min max

43

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Ordering Example	CA4x8R-5
Self-Compensating Bore Size Ø 4"	↑ ↑ ↑ ↑
Stroke Length 8" (203 mm)	
Rear Flange Mounting Effective Weight Range Version _	

Model Type Prefix

Standard Models

22

Issue 04.2018 - Specifications subject to change

CA: Self-contained with return spring, self-compensating **Special Models**

CAA: Air/Oil return without return spring. Use only with external air/oil tank.

CNA: Self-Contained without return spring

CSA: Air/Oil return with return spring. Use only with external air/oil tank.

Dimensions									
	Stroke	A max.	B max.	C max.	D max.	d1	d2	E	F
TYPES	mm	mm	mm	mm	mm	mm	mm	mm	mm
CA4X6	152	716	278	678	240	54	114	444	256
CA4X8	203	818	329	780	291	54	114	495	307
CA4X16	406	1,300	608.5	1,262.6	569	63.5	127	698	585

Performance	•										
		Effective Weight									
TYPES	¹ E ₃ Nm/cycle	E₄ Nm/h	E₄ with Air/Oil Tank Nm/h	E₄ with Oil Recirculation Nm/h	² We min. kg	² We max. kg	Hardness	Return Force min. N	Return Force max. N	Return Time s	Weight kg
CA4X6-3	47,500	3,000,000	5,100,000	6,600,000	3,500	8,600	-3	480	1,000	1.8	60.0
CA4X6-5	47,500	3,000,000	5,100,000	6,600,000	8,600	18,600	-5	480	1,000	1.8	60.0
CA4X6-7	47,500	3,000,000	5,100,000	6,600,000	18,600	42,700	-7	480	1,000	1.8	60.0
CA4X8-3	63,300	3,400,000	5,600,000	7,300,000	5,000	11,400	-3	310	1,000	2.3	68.0
CA4X8-5	63,300	3,400,000	5,600,000	7,300,000	11,400	25,000	-5	310	1,000	2.3	68.0
CA4X8-7	63,300	3,400,000	5,600,000	7,300,000	25,000	57,000	-7	310	1,000	2.3	68.0
CA4X16-3	126,500	5,600,000	9,600,000	12,400,000	10,000	23,000	-3	310	1,000	ask	146.0
CA4X16-5	126,500	5,600,000	9,600,000	12,400,000	23,000	50,000	-5	310	1,000	ask	146.0
CA4X16-7	126,500	5,600,000	9,600,000	12,400,000	50,000	115,000	-7	310	1,000	ask	146.0

¹ For emergency use only applications it is sometimes possible to exceed the above ratings. Please consult ACE for further details.

² The effective weight range limits can be raised or lowered to special order.

A1 1/2 to A3

Deceleration of heavy loads and progressive adjustment

Adjustable

Energy capacity 2,350 Nm/Cycle to 44,000 Nm/Cycle Stroke 50 mm to 305 mm

Strong and adjustable: Also in ACE's range of units ares heavy duty industrial shock absorbers, which can be adjusted. The models from the A1 1/2 to A3 range, which weigh between 7.55 kg and 48 kg, are extremely robust, ready-to-install hydraulic machine elements with impressively high energy absorption levels and a wide range of damping rates.

Their special aspect is the flexibility, as all the absorbers can be adjusted using a socket on the absorber base and be perfectly adapted to the required data. The A models cover a range of effective loads from 0.3 kg to 204,000 kg and can absorb up to 44,000 Nm energy.

These heavy duty, adjustable ACE industrial shock absorbers are the first choice in heavy duty applications and generally in heavy mechanical engineering when the usage data has not been exactly determined.

Technical Data

Energy capacity: 2,350 Nm/Cycle to 44,000 Nm/Cycle

Impact velocity range: 0.1 m/s to 5 m/s. Other speeds on request.

Operating temperature range: -12 °C to +66 °C. Other temperatures on request.

Mounting: In any position

Positive stop: External positive stops 2.5 mm to 3 mm before the end of stroke provided by the customer.

Adjustment: Hard impact at the start of stroke, adjust the ring towards 9. Hard impact at the end of stroke, adjust the ring towards 0.

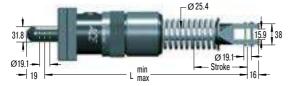
Material: Outer body: Steel corrosion-resistant coating; Piston rod: Hard chrome plated steel; Rod end button: Hardened steel and corrosion-resistant coating; Return spring: Zinc plated steel

Damping medium: Automatic Transmission Fluid (ATF)

Application field: Portal systems, Machines and plants, Conveyor systems, Crane systems, Loading and lifting equipment, Impact panels, Heavy load applications, Swivel units, Shelf storage systems

Note: For emergency use only applications and for continous use it is possible to exceed the published max. capacity ratings. In this case, please consult ACE.

Safety information: External materials in the surrounding area can attack the seal components and lead to a shorter service life. Please contact ACE for appropriate solution suggestions. Do not paint the shock absorbers due to heat emission.


On request: Special oils, nickel-plated, increased corrosion protection or other special options are available on request.

A1 1/2-F Front Flange

A1 1/2-C Clevis Mount

A1 1/2-R Rear Flange

A1 1/2-S Foot Mount

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Ordering Example	A1½x2R
Adjustable	↑ ↑ ↑
Bore Size Ø 1½"	
Stroke Length 2" (50.8 mm)	
Rear Flange Mounting	

Model Type Prefix

Standard Models

A: Self-contained with return spring, adjustable **Special Models**

AA: Air/Oil return without return spring. Use only with external air/oil tank. NA: Self-contained without return spring

SA: Air/Oil return with return spring. Use only with external air/oil tank.

Dimensions Stroke L min. L max. L1 L2 L3 L4 TYPES mm mm mm mm mm mm mm A11/2X2 277.8 328.6 195.2 54.2 50 170 A11/2X31/2 89 405.6 58.6 316.6 233 54.2 A11/2X5 127 354.8 481.8 271.5 54.2 208 58.6 A11/2X61/2 412 577 73 246 78 165 329

Dorformonoc

	Ma	x. Energy Cap	acity	Effectiv	e Weight					
			² E ₄ with Air/Oil			Return Force	Return Force		Side Load Angle	
	¹ E ₃	² E ₄	Tank	³ We min.	³ We max.	min.	max.	Return Time	max.	Weight
TYPES	Nm/cycle	Nm/h	Nm/h	kg	kg	N	N	S	۰	kg
A11/2X2	2,350	362,000	452,000	195	32,000	160	210	0.10	5	7.6
A11/2X31/2	4,150	633,000	791,000	218	36,000	110	210	0.25	4	8.9
A11/2X5	5,900	904,000	1,130,000	227	41,000	90	230	0.40	3	9.4
A11/2X61/2	7,700	1,180,000	1,469,000	308	45,000	90	430	0.40	2	12.0

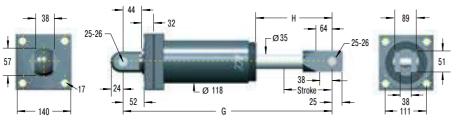
¹ For emergency use only applications it is sometimes possible to exceed the above ratings. Please consult ACE for further details. ² Figures for oil recirculation systems on request.

³ The effective weight range limits can be raised or lowered to special order.

-Ø35

REAL

Stroke


B max

Adjustable


A2-F Front Flange

A2-C Clevis Mount

A2-S 2" Bore Foot Mount

Model Type Prefix

Standard Models

A: Self-contained with return spring, adjustable

Special Models

AA: Air/Oil return without return spring. Use only with external air/oil tank. NA: Self-contained without return spring

SA: Air/Oil return with return spring. Use only with external air/oil tank.

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

A2-R Rear Flange

-□140

Ø17

ļ

Ø 118 19

A max

19

M100x2

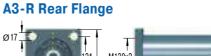
Ordering Example	A2x6-R
Adjustable	↑ ↑ ↑
Bore Size Ø 2" Stroke Length 6" = 152 mm	
Rear Flange Mounting	

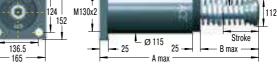
Dimensions						
	Stroke	A max.	B max.	С	D max.	E
TYPES	mm	mm	mm	mm	mm	mm
A2X2	50	313	110	173	125	70
A2X4	102	414	160	224	175	70
A2X6	152	516	211	275	226	70
A2X8	203	643	287	326	302	92
A2X10	254	745	338	377	353	108

Performanc	e									
	Ma	x. Energy Cap	acity	Effective Weight						
			² E ₄ with Air/Oil			Return Force	Return Force		Side Load Angle	
	¹ E ₃	² E ₄	Tank	³ We min.	³ We max.	min.	max.	Return Time	max.	Weight
TYPES	Nm/cycle	Nm/h	Nm/h	kg	kg	N	N	S	۰	kg
A2X2	3,600	1,100,000	1,350,000	250	77,000	210	285	0.25	3	14.3
A2X4	9,000	1,350,000	1,700,000	250	82,000	150	285	0.50	3	16.7
A2X6	13,500	1,600,000	2,000,000	260	86,000	150	400	0.60	3	19.3
A2X8	19,200	1,900,000	2,400,000	260	90,000	230	650	0.70	3	22.3
A2X10	23,700	2,200,000	2,700,000	320	113,000	160	460	0.80	3	26.2

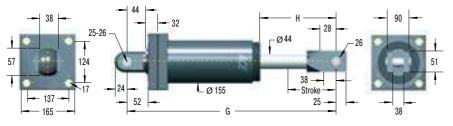
¹ For emergency use only applications it is sometimes possible to exceed the above ratings. Please consult ACE for further details.

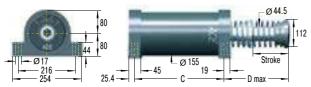

² Figures for oil recirculation systems on request.
 ³ The effective weight range limits can be raised or lowered to special order.




Adjustable

Ø 44.5


A3-F Front Flange



A3-C Clevis Mount

A3-S Foot Mount

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Ordering Example	A3x8R
Adjustable	↑ ↑ ↑
Bore Size Ø 3"	
Stroke Length 8" (203 mm)	
Rear Flange Mounting	

432

D max.

mm

224

300

447

Model Type Prefix

Standard Models A: Self-contained with return spring, adjustable

Special Models

A3X12

AA: Air/Oil return without return spring. Use only with external air/oil tank. NA: Self-contained without return spring

305

SA: Air/Oil return with return spring. Use only with external air/oil tank.

Dimensions Stroke A max. B max. С TYPES mm mm mm mm A3X5 127 211 490.5 254 A3X8 203 641 286 330

890

pecifications subject to change	
S	
1	
8	
.2018	
04.	
9	
sue 04	
ŝ	

Performance	1									
	Max. Energy Capacity		Effective Weight							
			² E ₄ with Air/Oil			Return Force	Return Force		Side Load Angle	
	¹ E ₃	² E ₄	Tank	³ We min.	³ We max.	min.	max.	Return Time	max.	Weight
TYPES	Nm/cycle	Nm/h	Nm/h	kg	kg	N	N	S	0	kg
A3X5	15,800	2,260,000	2,800,000	480	154,000	270	710	0.6	3	32.7
A3X8	28,200	3,600,000	4,520,000	540	181,500	280	740	0.8	3	38.5
A3X12	44,000	5,400,000	6,780,000	610	204,000	270	730	1.2	3	48.0
	a anhi annliastia	na it in comotime		ad the above .	atingo Diagono	anoult ACE for fur	rthar dataila			

434

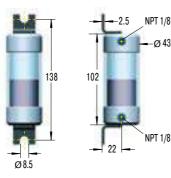
¹ For emergency use only applications it is sometimes possible to exceed the above ratings. Please consult ACE for further details.

² Figures for oil recirculation systems on request.

³ The effective weight range limits can be raised or lowered to special order.

Air/Oil Tanks for industrial shock absorbers

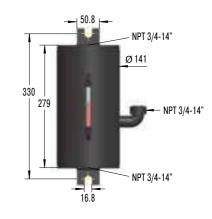
For high cycle rates and extreme temperatures with limited mounting space


Shock absorbers convert the introduced energy into heat. The more frequently a shock absorber is stressed per hour, the hotter the oil volume becomes over time. If the requirements placed on the impact frequency of a shock absorber are especially high, use of an air-oil tank is the solution.

Thanks to increased oil volume and resulting heat dissipation, the upper limit of the possible hourly energy capacity of the shock absorber increases significantly.

In addition, the air-oil tank provides an opportunity for controlled piston return if no permanent return force through an integrated spring in the shock absorber is desired.

Air/Oil Tanks AO

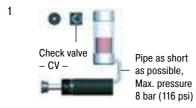

AO1 Oil capacity 20 cm³ Material: Aluminium caps

AO3 Oil capacity 370 cm³ Material: Steel

AO6 Oil capacity 2,600 cm³ Material: Steel

Technical Data

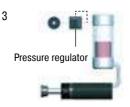
Detail drawings on request


Operating pressure: Max. 8 bar (116 psi) **Operating temperature range:** 80 °C **Damping medium:** ATF-Oil 42 cSt at 40 °C Mount air/oil tank higher than shock absorber. Bleed all air from system before operating. Safety instructions: Exhaust tank before carrying out service. Check valve holds pressure!

Suggested air/oil tanks in accordance with E_4 ratings

Air/Oil Tanks and Check Valves

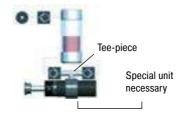
Connection Examples


Piston rod returns immediately to extended position when load moves away. Operation without main air supply possible for short periods.

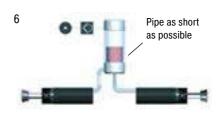
2

5

Return stroke may be sequenced by pneumatic valve at any desired time. No return force until valve energised.



Return force can be adjusted by pressure regulator. Ensure safe minimum pressure to return shock absorber.



4

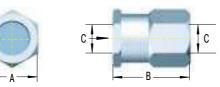
Spring return with air/oil tank. No air supply connected. Note: Will extend return time.

Oil recirculation circuit for extreme high cycle rates. Warm oil is positively circulated through air/oil tank for increased heat dissipation.

Connection of two shock absorbers to one air/oil tank is possible. Use next larger size tank. Combination with examples 2, 3 and 5 possible.

Selection Chart Air/Oil Tanks

	With Tank Example 1 to 4		With Recirc. Circuits Example 5 to 6		Min. Conn. Pipe Ø	Thread Sizes for Connection to Air/Oil Tank	
						Thread	² Thread
Shock Absorber Type	Tank	Check Valve	Tank	Check Valve	mm	Bottom	Side
MCA, MAA, MLA33	AO1	CV1/8	AO3	CV1/4	4	1 1/8-27 NPTF inside	1/8-27 NPTF inside
MCA, MAA, MLA45	AO1	CV1/8	AO3	CV3/8	6	1/8-27 NPTF inside	1/8-27 NPTF inside
MCA, MAA, MLA64	AO3	CV1/4	A06	CV3/4	8	1/4-18 NPTF inside	1/4-18 NPTF inside
CAA, AA2	AO6	CV3/4	A082	CV3/4	15	-	-
CAA, AA3	AO6	CV3/4	A082	CV3/4	19	-	-
CAA4	AO82	CV3/4	AO82	CV3/4	38	-	_


AO82 and connection accessories: Details on request

¹ adapted

² on request (add suffix -PG/-P)

Check Valves CV

Through an oil circuit fresh oil is drawn in from the industrial shock absorber and warm oil is pumped off (see example 5). To obtain this function, ACE offers suitable check valves of the CV series.

Technical Data

Operating pressure: 20 bar (290 psi) Operating temperature range: 95 °C Suitable for: Oil, air, water Material: Aluminium

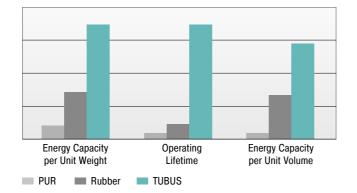
Check Valves – Dimensions						
	А	В	С			
TYPES	mm	mm				
CV1/8	19	24	1/8-27 NPT			
CV1/4	29	33	1/4-18 NPT			
CV3/8	29	33	3/8-18 NPT			
CV1/2	41	40	1/2-14 NPT			
CV3/4	48	59	3/4-14 NPT			

Profile Dampers

The low cost alternative for continuous duty

The exceedingly successful TUBUS series from ACE is a perfect alternative, when masses don't need to be decelerated to an exact point. Available in more than 140 different versions, the profile dampers are used to slow down masses, particularly under extreme conditions.

They are also recommended for use if there is little installation space available. Manufactured in co-polyester elastomer, the highly resistant absorbers provide the best benefits in areas where other materials fail or where a similarly high service life of up to 1 million load changes cannot be achieved. They are affordable, compact and light and absorb the energy with different damping characteristics depending on the design.


Physical Properties of TUBUS Profile Dampers

ACE TUBUS profile dampers are high performance damping elements made from a special Co-Polyester Elastomer. They have a high energy absorbing capacity compared with other materials.

The excellent damping characteristics are achieved as a result of the special elastomer material and the worldwide unique construction design. This enables us to change the characteristics of the elastomer material so that individual and distinct damping curves are possible.

TUBUS dampers offer a considerable performance advantage when compared to other materials such as rubber, urethanes (PUR) and steel springs.

An advantage over other damping elements is TUBUS' operating life expectancy - up to twenty times longer than with urethane dampers, up to ten times longer than with rubber dampers and up to five times longer than with steel spring dampers.

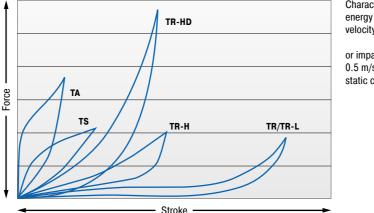
Comparison of Damping Characteristics

The innovative TUBUS dampers absorb energy while exhibiting the following damping characteristics:

Product family TA

Degressive characteristic with max. energy absorption with min. stroke. Energy absorption: 58 % to 73 %

Product family TS


Almost linear characteristic with low reaction force over a short operating stroke. Energy absorption: 35 % to 64 %

Product family TR/TR-L/TR-H

Progressive characteristic with gradually increasing reaction force over a long stroke. Energy absorption TR: 25 % to 45 % Energy absorption TR-L: 26 % to 41 % Energy absorption TR-H: 39 % to 62 %

Product family TR-HD

Progressive characteristic with high energy absorption with a short stroke. Energy absorption: 43 % to 72 %

Characteristics of dynamic energy absorption for impact velocity over 0.5 m/s.

or impact velocities under 0.5 m/s, please request a static characteristic curve.

TUBUS TA, TS, TR, TR-H, TR-HD

TUBUS IA	, IS, IR, IR-H, I		1		10
	Max. Ener	gy Capacity			
	¹ E ₃	Emergency Stop	Stroke max.	Page	
TYPES	Nm/cycle	E ₃ Nm/cycle	mm	Faye	TYP
TA12-5	2.0	3.0	5	117	TR6
TA17-7	6.0	9.0	7	117	TR6
TA21-9	10.0	16.0	9	117	TR6
TA22-10	11.5	21.0	10	117	TR7
TA28-12	29.0	46.0	12	117	TR7
TA34-14	48.0	87.0	14	117	TR7
TA37-16	65.0	112.0	16	117	TR8
TA40-16	82.0 112.0	130.0	16	117	TR8
TA43-18 TA47-20	140.0	165.0 173.0	18 20	117 117	TR9 TR9
TA50-22	170.0	223.0	20	117	TR9
TA54-22	201.0	334.0	22	117	TR9
TA57-24	242.0	302.0	24	117	TR1
TA62-25	304.0	361.0	25	117	TR1
TA65-27	374.0	468.0	27	117	TR1
TA70-29	421.0	524.0	29	117	¹ Ma
TA72-31	482.0	559.0	31	117	
TA80-32	570.0 683.0	831.0 921.0	32 35	117	
TA82-35 TA85-36	797.0	1,043.0	35	117 117	
TA90-38	934.0	1,249.0	38	117	
TA98-40	1,147.0	1,555.0	40	117	
TA116-48	2,014.0	2,951.0	48	117	
TS14-7	2.0	3.0	7	119	
TS18-9	4.0	6.0	9	119	
TS20-10	6.0	7.0	10	119	
TS26-15	11.5	15.0	15	119	TU
TS32-16	23.0	26.0	16	119	10
TS35-19 TS40-19	30.0 34.0	36.0 42.0	19 19	119 119	
TS41-21	48.0	63.0	21	119	
TS44-23	63.0	72.0	23	119	TYP
TS48-25	81.0	91.0	25	119	TR2
TS51-27	92.0	114.0	27	119	TR4
TS54-29	122.0	158.0	29	119	TR6
TS58-30	149.0	154.0	30	119	TR6
TS61-32	163.0	169.0	32	119	TR6
TS64-34 TS68-36	208.0 227.0	254.0 272.0	34 36	119 119	TR6
TS75-39	291.0	408.0	39	119	TR6 TR6
TS78-40	352.0	459.0	40	119	TR7
TS82-44	419.0	620.0	44	119	TR7
TS84-43	475.0	635.0	43	119	TR7
TS90-47	580.0	778.0	47	119	TR7
TS107-56	902.0	966.0	56	119	TR7
TR29-17	1.2	1.8	17	121	TR8
TR37-22	2.3	5.4	22	121	TR8
TR43-25 TR50-35	3.5 5.8	8.1 8.3	25 35	121 121	TR8 TR8
TR63-43	12.0	17.0	43	121	TR8
TR67-40	23.0	33.0	40	121	TR9
TR76-46	34.5	43.0	46	121	TR9
TR83-50	45.0	74.0	50	121	TR9
TR85-50	68.0	92.0	50	121	TR9
TR93-57	92.0	122.0	57	121	TR9
TR100-60	115.0	146.0	60	121	TR9
TR30-15H TR39-19H	2.7	5.7	15 19	123 123	TR9
TR45-23H	6.0 8.7	18.0 24.0	23	123	TR1 TR1
TR52-32H	11.7	20.0	32	123	TR1
TR64-41H	25.0	46.0	41	123	TR1
TR68-37H	66.5	98.0	37	123	TR1
TR79-42H	81.5	106.0	42	123	TR1
TR86-45H	124.0	206.0	45	123	TR1
TR87-46H	158.0	261.0	46	123	TR1
TR95-50H	228.0	342.0	50	123	TR1
TR102-56H	290.0	427.0	56 14	123 127	TR1 TR1
	105.0				(B1
TR42-14HD	405.0	567.0 1.200.0			
	857.0	1,200.0	12	127	TR1
TR42-14HD TR47-12HD			12		TR1 TR1 TR1

	Max. Ener	gy Capacity		
TYPES	¹ E ₃ Nm/cycle	Emergency Stop E ₃ Nm/cycle	Stroke max. mm	Page
TR62-15HD	1,790	2,506	15	127
TR62-19HD	2,940	4,116	19	127
TR63-24HD	2,061	2,885	24	127
TR72-26HD	1,700	2,380	26	127
TR79-20HD	2,794	3,912	20	127
TR79-31HD	2,975	4,165	31	127
TR85-33HD	2,526	3,536	33	127
TR89-21HD	4,438	6,213	21	127
TR90-37HD	3,780	5,292	37	127
TR93-24HD	3,421	4,789	24	127
TR97-31HD	7,738	10,833	31	127
TR97-35HD	2,821	3,949	35	127
TR102-44HD	4,697	6,576	44	127
TR105-28HD	5,641	7,897	28	127
TR117-30HD	8,457	11,840	30	127

Nax. energy capacity per cycle for continous use.

TUBUS TA, TS, TR, TR-H, TR-HD

	May Ener	gy Capacity		
	Max. Eller	Emergency Stop		
TYPES	¹ E ₃ Nm/cycle	Energency otop E ₃ Nm/cycle	Stroke max. mm	Paç
TR29-17L	7.2	10.9	17	12
TR43-25L	14.0	32.7	25	12
TR63-43L	21.9	32.0	43	12
TR66-40L-1	102.0	143.0	40	12
TR66-40L-2	204.0	286.0	40	12
TR66-40L-3	306.0	428.0	40	12
TR66-40L-4	408.0	571.0	40	12
TR66-40L-5	510.0	714.0	40	12
TR76-45L-1	145.0	203.0	45	12
TR76-45L-2	290.0	406.0	45	12
TR76-45L-3	435.0	609.0	45	12
TR76-45L-4	580.0	812.0	45	12
TR76-45L-5	725.0	1,015.0	45	12
TR83-48L-1	180.0	252.0	43	12
TR83-48L-2	360.0	504.0	48	12
TR83-48L-3	540.0	756.0	48	12
TR83-48L-4	720.0	1,008.0	48	12
TR83-48L-5	900.0	1,260.0	48	12
TR99-60L-1	270.0	378.0	60	12
TR99-60L-2	540.0	756.0	60	12
TR99-60L-3	810.0	1,134.0	60	12
TR99-60L-4	1,080.0	1,512.0	60	12
TR99-60L-5	1,350.0	1,890.0	60	12
TR99-60L-6	1,620.0	2,268.0	60	12
TR99-60L-7	1,890.0	2,200.0	60	12
TR143-86L-1	600.0	840.0	86	12
TR143-86L-2	1,200.0	1,680.0	86	12
TR143-86L-3	1,800.0	2,520.0	86	12
TR143-86L-4	2,400.0	3,360.0	86	12
TR143-86L-5	3,000.0	4,200.0	86	12
TR143-86L-6	3,600.0	5,040.0	86	12
TR143-86L-7	4,200.0	,	86	12
TR188-108L-1	4,200.0	5,880.0 1,540.0	108	12
TR188-108L-2	2,200.0	,	108	12
		3,080.0		
TR188-108L-3	3,300.0	4,620.0	108	12
TR188-108L-4	4,400.0	6,160.0	108	12
TR188-108L-5	5,500.0	7,700.0	108	12
TR188-108L-6	6,600.0	9,240.0	108	12
TR188-108L-7	7,700.0	10,780.0	108	12

Profile Dampers

	TUBUS TA Axial Damping Compact size and strong force absorption Linear slides, Pneumatic cylinders, Handling modules, Machines and plants	Page 116
Ą	TUBUS TS Axial Soft Damping Compact size and smooth deceleration Linear slides, Pneumatic cylinders, Handling modules, Machines and plants	Page 118
Ç	TUBUS TR Radial Damping Compact size and soft deceleration Furniture industry, Sports equipment, Linear slides, Pneumatic cylinders	Page 120
Ģ	TUBUS TR-H Radial Damping, Hard Version Compact size with soft deceleration and high energy absorption Furniture industry, Sports equipment, Linear slides, Pneumatic cylinders	Page 122
	TUBUS TR-L Radial Damping, Long Version Powerhouse in long body length Offshore industry, Agricultural machinery, Impact panels, Conveyor systems	Page 124
	TUBUS TR-HD Radial Damping, Heavy Duty Version Compact powerhouse in solid material Offshore industry, Agricultural machinery, Impact panels, Conveyor systems	Page 126

TUBUS TA

Compact size and strong force absorption

Axial Damping

Energy capacity 2 Nm/Cycle to 2,951 Nm/Cycle Maximum stroke 5 mm to 48 mm

Very efficient energy guzzlers: The TA profile dampers from the ACE TUBUS-Series are maintenance-free and ready to install. They're made of co-polyester elastomer; a material that only heats up slightly and ensures consistent damping. The TA models absorbs most of the energy at the start of the stroke.

The TA family has been specially developed for maximum energy absorption within a range of 2 Nm to 2,951 Nm (18 in-lbs to 26,119 in-lbs.). These dampers have a minimum height is thanks to the space-saving shape, with Ø 12 mm to Ø 116 mm (Ø 0.47" to Ø 4.57"). The dampers can be very easily and quickly installed with the provided special screw.

These compact, cost-effective dampers are ideal as end position dampers in linear axes, in toolmaking and tool machines, in hydraulic and pneumatic equipment, handling equipment and other applications.

Technical Data

Energy capacity: 2 Nm/Cycle to 2,951 Nm/Cycle

Energy absorption: 58 % to 73 % Dynamic force range: 870 N to 90,000 N Operating temperature range: -40 °C to 90 °C

Construction size: 12 mm to 116 mm **Mounting:** In any position

Material hardness rating: Shore 55D Material: Profile body: Co-Polyester Elastomer **Environment:** Resistant to microbes, seawater or chemical attack. Excellent UV and ozone resistance. Material does not absorb water or swell.

Impact velocity range: Max. 5 m/s

Torque max.: M3: 1 Nm M4: 1.7 Nm M5: 2.3 Nm M6: 6 Nm M8: 20 Nm M12: 50 Nm M16: 120 Nm Application field: Linear slides, Pneumatic cylinders, Handling modules, Machines and plants, Swivel units, Electro-mechanical drives, Hydraulic devices, Conveyor systems, Crane systems

Note: Suitable for emergency stop applications and for continous use. For applications with preloading and increased temperatures please consult ACE.

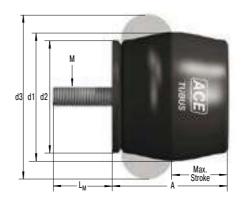
Safety information: Mounting screw should additionally be secured with Loctite.

On request: Special strokes, -characteristics, -spring rates, -sizes and -materials.

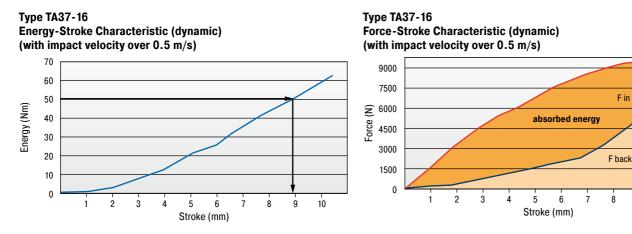
Axial Damping

rebound

stroke


energy

10


9

TA

Characteristics

With the aid of the characteristic curves above you can estimate the proportion of the total energy that will be absorbed. Example: With impact energy of 50 Nm the Energy-Stroke diagram shows that a stroke of about 8.8 mm is needed. On the Force-Stroke diagram you can estimate the proportion of absorbed energy to rebound energy at this stroke length. Dynamic (v > 0.5 m/s) and static (v \leq 0.5 m/s) characteristics of all types are available on request.

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Ordering Example	TA37-16
TUBUS Axial Outer-Ø 1.46" (37 mm) Stroke 0.63" (16 mm)	

Performance and Dimensions

¹ E ₃ Nm/cycle 2.0	E ₃ Nm/cycle 3	Stroke max. mm	Α	d1	d2	d3	L	М	Weight
Nm/cycle 2.0		mm			42	uJ	LM	IVI	weight
	0		mm	mm	mm	mm	mm		kg
<u> </u>	3	5	11	12	11	15	3	M3	0.001
6.0	9	7	16	17	15	22	4	M4	0.006
10.0	16	9	18	21	18	26	5	M5	0.017
11.5	21	10	19	22	19	27	6	M6	0.008
29.0	46	12	26	28	25	36	6	M6	0.016
48.0	87	14	30	34	30	43	6	M6	0.024
65.0	112	16	33	37	33	48	6	M6	0.030
82.0	130	16	35	40	34	50	8	M8	0.040
112.0	165	18	38	43	38	55	8	M8	0.051
140.0	173	20	41	47	41	60	12	M12	0.070
170.0	223	22	45	50	44	64	12	M12	0.085
201.0	334	22	47	54	47	68	12	M12	0.100
242.0	302	24	51	57	50	73	12	M12	0.116
304.0	361	25	54	62	53	78	12	M12	0.132
374.0	468	27	58	65	57	82	12	M12	0.153
421.0	524	29	61	70	60	86	12	M12	0.174
482.0	559	31	65	72	63	91	16	M16	0.257
570.0	831	32	69	80	69	100	16	M16	0.311
683.0	921	35	74	82	72	105	16	M16	0.350
797.0	1,043	36	76	85	75	110	16	M16	0.391
934.0	1,249	38	80	90	78	114	16	M16	0.414
1,147.0	1,555	40	86	98	85	123	16	M16	0.513
2,014.0	2,951	48	101	116	98	146	16	M16	0.803
	10.0 11.5 29.0 48.0 65.0 82.0 112.0 140.0 170.0 201.0 242.0 304.0 374.0 421.0 482.0 570.0 683.0 797.0 934.0 1,147.0	10.0 16 11.5 21 29.0 46 48.0 87 65.0 112 82.0 130 112.0 165 140.0 173 170.0 223 201.0 334 242.0 302 304.0 361 374.0 468 421.0 524 482.0 559 570.0 831 683.0 921 797.0 1,043 934.0 1,249 1,147.0 1,555	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.0 16 9 18 21 18 26 11.5 21 10 19 22 19 27 29.0 46 12 26 28 25 36 48.0 87 14 30 34 30 43 65.0 112 16 33 37 33 48 82.0 130 16 35 40 34 50 112.0 165 18 38 43 38 55 140.0 173 20 41 47 41 60 170.0 223 22 45 50 44 64 201.0 334 22 47 54 47 68 242.0 302 24 51 57 50 73 304.0 361 25 54 62 53 78 374.0 468 27 58 65 57 82 421.0 524 29 61 70 60 86 482.0 559 31 65 72 63 91 570.0 831 32 69 80 69 100 683.0 921 35 74 82 72 105 797.0 $1,043$ 36 76 85 75 110 934.0 $1,249$ 38 80 90 78 114 $1,147.0$ $1,555$ 40 86	10.0 16 9 18 21 18 26 5 11.5 21 10 19 22 19 27 6 29.0 46 12 26 28 25 36 6 48.0 87 14 30 34 30 43 6 65.0 112 16 33 37 33 48 6 82.0 130 16 35 40 34 50 8 112.0 165 18 38 43 38 55 8 140.0 173 20 41 47 41 60 12 170.0 223 22 45 50 44 64 12 201.0 334 22 47 54 47 68 12 242.0 302 24 51 57 50 73 12 304.0 361 25 54 62 53 78 12 374.0 468 27 58 65 57 82 12 421.0 524 29 61 70 60 86 12 482.0 559 31 65 72 63 91 16 570.0 831 32 69 80 69 100 16 683.0 921 35 74 82 72 105 16 797.0 $1,043$ 36 76 <t< td=""><td>10.0$16$$9$$18$$21$$18$$26$$5$$M5$$11.5$$21$$10$$19$$22$$19$$27$$6$$M6$$29.0$$46$$12$$26$$28$$25$$36$$6$$M6$$48.0$$87$$14$$30$$34$$30$$43$$6$$M6$$65.0$$112$$16$$33$$37$$33$$48$$6$$M6$$82.0$$130$$16$$35$$40$$34$$50$$8$$M8$$112.0$$165$$18$$38$$43$$38$$55$$8$$M8$$1140.0$$173$$20$$41$$47$$41$$60$$12$$M12$$170.0$$223$$22$$45$$50$$44$$64$$12$$M12$$201.0$$334$$22$$47$$54$$47$$68$$12$$M12$$212.0$$302$$24$$51$$57$$50$$73$$12$$M12$$242.0$$302$$24$$51$$57$$63$$91$$16$$M16$$374.0$$468$$27$$58$$65$$57$$82$$12$$M12$$421.0$$524$$29$$61$$70$$60$$86$$12$$M12$$482.0$$559$$31$$65$$72$$63$$91$$16$$M16$$683.0$$921$$35$$74$$82$$72$$105$<</td></t<>	10.0 16 9 18 21 18 26 5 $M5$ 11.5 21 10 19 22 19 27 6 $M6$ 29.0 46 12 26 28 25 36 6 $M6$ 48.0 87 14 30 34 30 43 6 $M6$ 65.0 112 16 33 37 33 48 6 $M6$ 82.0 130 16 35 40 34 50 8 $M8$ 112.0 165 18 38 43 38 55 8 $M8$ 1140.0 173 20 41 47 41 60 12 $M12$ 170.0 223 22 45 50 44 64 12 $M12$ 201.0 334 22 47 54 47 68 12 $M12$ 212.0 302 24 51 57 50 73 12 $M12$ 242.0 302 24 51 57 63 91 16 $M16$ 374.0 468 27 58 65 57 82 12 $M12$ 421.0 524 29 61 70 60 86 12 $M12$ 482.0 559 31 65 72 63 91 16 $M16$ 683.0 921 35 74 82 72 105 <

¹ Max. energy capacity per cycle for continous use.

TUBUS TS

Compact size and smooth deceleration

Axial Soft Damping Energy capacity 2 Nm/Cycle to 966 Nm/Cycle Maximum stroke 7 mm to 56 mm

Energy absorption in a compact and uniform way: The TS (TUBUS soft) profile dampers are also manufactured from co-polyester elastomer. Due to the almost linear damping characteristic curve, the maintenance-free, ready-to-install components softly absorb the energy with minimum strain on the machine. Consistent damping is helped by the low temperature increase of the material during operation.

The TS product family impresses with maximum energy absorption within a range of 2 Nm to 966 Nm within a minimum height. The spacesaving design has been implemented from Ø 14 mm to Ø 107 mm. The special screw supplied is used to simply and quickly fix the profile dampers in place.

Suitable for emergency stop and permanent applications, the cost-effective, durable TUBUS TS can be used as end position dampers in linear axes, in toolmaking and tool machines and in hydraulic, pneumatic and handling equipment.

Technical Data

Energy capacity: 2 Nm/Cycle to 966 Nm/Cycle

Energy absorption: 35 % to 64 % Dynamic force range: 533 N to 23,500 N

Operating temperature range: -40 $^\circ\text{C}$ to 90 $^\circ\text{C}$

Construction size: 14 mm to 107 mm Mounting: In any position

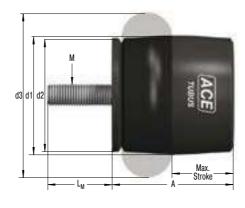
Material hardness rating: Shore 40D Material: Profile body: Co-Polyester Elastomer **Environment:** Resistant to microbes, seawater or chemical attack. Excellent UV and ozone resistance. Material does not absorb water or swell.

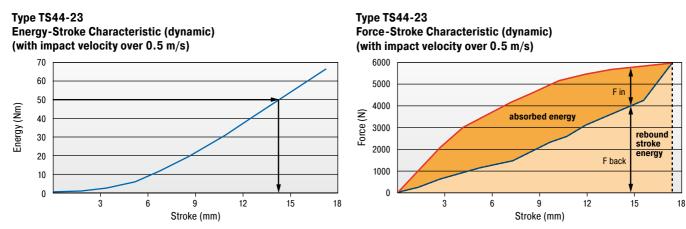
Impact velocity range: Max. 5 m/s

Torque max.: M4: 1.7 Nm M5: 2.3 Nm M6: 6 Nm M12: 50 Nm M16: 120 Nm **Application field:** Linear slides, Pneumatic cylinders, Handling modules, Machines and plants, Swivel units, Electro-mechanical drives, Crane systems, Conveyor systems

Note: Suitable for emergency stop applications and for continous use. For applications with preloading and increased temperatures please consult ACE.

Safety information: Mounting screw should additionally be secured with Loctite.


On request: Special strokes, -characteristics, -spring rates, -sizes and -materials.


Axial Soft Damping

TS

Characteristics

With the aid of the characteristic curves above you can estimate the proportion of the total energy that will be absorbed. Example: With impact energy of 50 Nm the Energy-Stroke diagram shows that a stroke of about 14 mm is needed. On the Force-Stroke diagram you can estimate the proportion of absorbed energy to rebound energy at this stroke length. Dynamic (v > 0.5 m/s) and static ($v \le 0.5 m/s$) characteristics of all types are available on request.

The calculation and selection of the most suitable damper
should be carried out or be approved by ACE.

Ordering Example	TS44-23
TUBUS Axial Soft	† †
Outer-Ø 1.73" (44 mm)	
Stroke 0.91" (23 mm)	

Performance and Dimensions

		Emergency Stop								
	1 E ₃	E3	Stroke max.	Α	d1	d2	d3	L _M	М	Weight
TYPES	Nm/cycle	Nm/cycle	mm	mm	mm	mm	mm	mm		kg
TS14-7	2.0	3	7	15	14	13	19	4	M4	0.007
TS18-9	4.0	6	9	18	18	16	24	5	M5	0.008
TS20-10	6.0	7	10	21	20	19	27	6	M6	0.008
TS26-15	11.5	15	15	28	26	25	37	6	M6	0.015
TS32-16	23.0	26	16	32	32	30	44	6	M6	0.021
TS35-19	30.0	36	19	36	35	33	48	6	M6	0.028
TS40-19	34.0	42	19	38	40	34	51	6	M6	0.031
TS41-21	48.0	63	21	41	41	38	55	12	M12	0.060
TS44-23	63.0	72	23	45	44	40	60	12	M12	0.070
TS48-25	81.0	91	25	49	48	44	64	12	M12	0.080
TS51-27	92.0	114	27	52	51	47	69	12	M12	0.095
TS54-29	122.0	158	29	55	54	50	73	12	M12	0.105
TS58-30	149.0	154	30	59	58	53	78	12	M12	0.121
TS61-32	163.0	169	32	62	61	56	83	16	M16	0.203
TS64-34	208.0	254	34	66	64	60	87	16	M16	0.232
TS68-36	227.0	272	36	69	68	63	92	16	M16	0.248
TS75-39	291.0	408	39	75	75	69	101	16	M16	0.301
TS78-40	352.0	459	40	79	78	72	105	16	M16	0.332
TS82-44	419.0	620	44	84	82	75	110	16	M16	0.346
TS84-43	475.0	635	43	85	84	78	115	16	M16	0.402
TS90-47	580.0	778	47	92	90	84	124	16	M16	0.583
TS107-56	902.0	966	56	110	107	100	147	16	M16	0.733

¹ Max. energy capacity per cycle for continous use.

TUBUS TR

Compact size and soft deceleration

Radial Damping

Energy capacity 1.2 Nm/Cycle to 146 Nm/Cycle Maximum stroke 17 mm to 60 mm

For long, soft braking action: The TUBUS TR models deliver linear damping forces. These maintenance-free, ready-to-install elements are made of co-polyester elastomer, which only heats up slightly during operation and therefore provides consistent damping.

The radial loading enables a very long and soft deceleration with progressive energy reduction at the end of the stroke. The TR product family has been specially designed for maximum stroke with a minimum height, producing an energy absorption per stroke extending from 1.2 Nm to 146 Nm. The dampers are available in compact formats of Ø 29 mm to Ø 100 mm and are supplied with a special screw for simple, quick assembly.

The TUBUS TR products are suitable as end position dampers in linear axes, in toolmaking and tool machines, in hydraulic and pneumatic equipment, handling equipment and other applications.

Technical Data

Energy capacity: 1.2 Nm/Cycle to 146 Nm/Cycle

Energy absorption: 25 % to 45 %

Dynamic force range: 218 N to 7,500 N **Operating temperature range:** -40 °C to 90 °C

Construction size: 29 mm to 100 mm Mounting: In any position

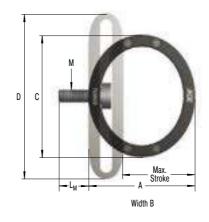
Material hardness rating: Shore 40D Material: Profile body: Co-Polyester Elastomer **Environment:** Resistant to microbes, seawater or chemical attack. Excellent UV and ozone resistance. Material does not absorb water or swell.

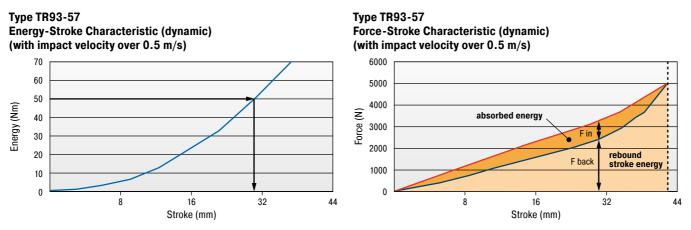
Impact velocity range: Max. 5 m/s

Torque max.: M5: 3 Nm M6: 6 Nm M8: 20 Nm

Application field: Furniture industry, Sports equipment, Linear slides, Pneumatic cylinders, Handling modules, Machines and plants, Stacking units, Electro-mechanical drives, Conveyor systems, Dock constructions for shipbuilding **Note:** Suitable for emergency stop applications and for continous use. For applications with preloading and increased temperatures please consult ACE.

Safety information: Mounting screw should additionally be secured with Loctite.


On request: Special strokes, -characteristics, -spring rates, -sizes and -materials.


Radial Damping

TR

Characteristics

With the aid of the characteristic curves above you can estimate the proportion of the total energy that will be absorbed. Example: With impact energy of 50 Nm the Energy-Stroke diagram shows that a stroke of about 31 mm is needed. On the Force-Stroke diagram you can estimate the proportion of absorbed energy to rebound energy at this stroke length. Dynamic (v > 0.5 m/s) and static ($v \le 0.5 m/s$) characteristics of all types are available on request.

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Ordering Example	TR93-57
TUBUS Radial Outer-Ø 3.66" (93 mm) Stroke 2.24" (57 mm)	

Performance	and Dimensions	6									
Emergency Stop											
TYPES	¹ E ₃ Nm/cycle	E ₃ Nm/cycle	Stroke max. mm	A mm	B mm	C mm	D mm	L _M mm	М	Weight kg	
TR29-17	1.2	1.8	17	25	13	29	38	5	M5	0.007	
TR37-22	2.3	5.4	22	32	19	37	50	5	M5	0.013	
TR43-25	3.5	8.1	25	37	20	43	58	5	M5	0.017	
TR50-35	5.8	8.3	35	44	34	50	68	5	M5	0.022	
TR63-43	12.0	17.0	43	55	43	63	87	5	M5	0.051	
TR67-40	23.0	33.0	40	59	46	67	88	5	M5	0.077	
TR76-46	34.5	43.0	46	67	46	76	102	6	M6	0.104	
TR83-50	45.0	74.0	50	73	51	83	109	6	M6	0.142	
TR85-50	68.0	92.0	50	73	68	85	111	8	M8	0.206	
TR93-57	92.0	122.0	57	83	83	93	124	8	M8	0.297	
TR100-60	115.0	146.0	60	88	82	100	133	8	M8	0.308	

¹ Max. energy capacity per cycle for continous use.

TUBUS TR-H

Compact size with soft deceleration and high energy absorption

Radial Damping, Hard Version Energy capacity 2.7 Nm/Cycle to 427 Nm/Cycle Maximum stroke 15 mm to 56 mm

Harder mixture of materials for higher energy absorption: The maintenance-free and ready-to-install TR-H profile dampers, are stressed radially in the same way as the basic TR model. With almost the same dimensions, they also decelerate with a very long and soft action. The harder co-polyester elastomer mixture leads to significantly high energy absorption of 2.7 Nm to 427 Nm (3.9 in-lbs to 3,779 in-lbs) in these models. The supplied special screw makes them easy to mount.

The TR-H product family is space-saving with dimensions of \emptyset 30 mm to \emptyset 102 mm (\emptyset 1.18" to \emptyset 4.02"). It complements the TUBUS range between the progressive TR and almost linear TS models. Users are therefore provided with a full range of deceleration curves within the ACE TUBUS family.

The TUBUS TR-H products are suitable end position dampers in linear axes, in toolmaking and tool machines and in hydraulic, pneumatic and handling equipment as well as other applications.

Technical Data

Energy capacity: 2.7 Nm/Cycle to 427 Nm/Cycle

Energy absorption: 39 % to 62 %

Dynamic force range: 550 N to 21,200 N Operating temperature range: -40 °C to 90 °C

Construction size: 30 mm to 102 mm Mounting: In any position

Material hardness rating: Shore 55D Material: Profile body: Co-Polyester Elastomer **Environment:** Resistant to microbes, seawater or chemical attack. Excellent UV and ozone resistance. Material does not absorb water or swell.

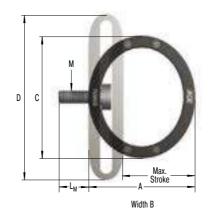
Impact velocity range: Max. 5 m/s

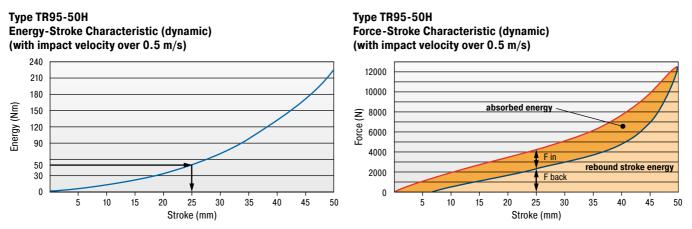
Torque max.: M5: 3 Nm M6: 6 Nm M8: 20 Nm

Application field: Furniture industry, Sports equipment, Linear slides, Pneumatic cylinders, Handling modules, Machines and plants, Stacking units, Electro-mechanical drives, Conveyor systems, Dock constructions for shipbuilding **Note:** Suitable for emergency stop applications and for continous use. For applications with preloading and increased temperatures please consult ACE.

Safety information: Mounting screw should additionally be secured with Loctite.

On request: Special strokes, -characteristics, -spring rates, -sizes and -materials.


122 🗖


Radial Damping, Hard Version

TR-H

Characteristics

With the aid of the characteristic curves above you can estimate the proportion of the total energy that will be absorbed. Example: With impact energy of 50 Nm the Energy-Stroke diagram shows that a stroke of about 25 mm is needed. On the Force-Stroke diagram you can estimate the proportion of absorbed energy to rebound energy at this stroke length. Dynamic (v > 0.5 m/s) and static ($v \le 0.5 m/s$) characteristics of all types are available on request.

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

		Emergency Stop								
	1 E3	E3	Stroke max.	Α	В	С	D	L _M	М	Weight
TYPES	Nm/cycle	Nm/cycle	mm	mm	mm	mm	mm	mm		kg
TR30-15H	2.7	5.7	15	23	13	30	38	5	M5	0.006
TR39-19H	6.0	18.0	19	30	19	39	50	5	M5	0.013
TR45-23H	8.7	24.0	23	36	20	45	58	5	M5	0.019
TR52-32H	11.7	20.0	32	42	34	52	68	5	M5	0.027
TR64-41H	25.0	46.0	41	53	43	64	87	5	M5	0.054
TR68-37H	66.5	98.0	37	56	46	68	88	5	M5	0.083
TR79-42H	81.5	106.0	42	64	46	79	102	6	M6	0.107
TR86-45H	124.0	206.0	45	69	51	86	109	6	M6	0.152
TR87-46H	158.0	261.0	46	68	67	86	111	8	M8	0.202
TR95-50H	228.0	342.0	50	77	82	95	124	8	M8	0.281
TR102-56H	290.0	427.0	56	84	81	102	133	8	M8	0.334

 \bigcirc

¹ Max. energy capacity per cycle for continous use.

Performance and Dimensions

TUBUS TR-L

Powerhouse in long body length

Radial Damping, Long Version Energy capacity 7.2 Nm/Cycle to 10,780 Nm/Cycle Maximum stroke 17 mm to 108 mm

Especially for applications with long and soft deceleration: The radial tube dampers TR-L from the ACE TUBUS-Series are maintenance-free, ready-to-install elements made of co-polyester elastomer.

Their radial load offers designers a very long and soft deceleration with a progressive reduction in energy at the end of the stroke. The TR-L range has been specially developed for a maximum stroke with a minimum height and a range of 7.2 Nm to 10,780 Nm. The absorption capacity is dependent on the length of the selected tube damper. These models are available in sizes between Ø 29 mm and Ø 188 mm.

The TUBUS TR-L is used where impact or collision protection is necessary along a straight line e.g. on shovels in mining equipment, loading and lifting devices, dock systems in shipbuilding or luggage and transport belts.

Technical Data

Energy capacity: 7.2 Nm/Cycle to 10,780 Nm/Cycle

Energy absorption: 26 % to 41 %

Dynamic force range: 1,312 N to 217,700 N Operating temperature range: -40 °C to 90 °C

Construction size: 29 mm to 188 mm Mounting: In any position

Material hardness rating: Shore 55D Material: Profile body: Co-Polyester Elastomer

Environment: Resistant to microbes, seawater or chemical attack. Excellent UV and

ozone resistance. Material does not absorb water or swell.

Impact velocity range: Max. 5 m/s

Torque max.: M5: 3 Nm M8: 20 Nm M16: 40 Nm (DIN912) M16: 120 Nm (shouldered screw)

Application field: Offshore industry, Agricultural machinery, Impact panels, Conveyor systems, Stacking units, Shipbuilding, Shovels or articulated joints for construction machinery, Transport roads, Loading and lifting equipment **Note:** Suitable for emergency stop applications and for continous use. For applications with preloading and increased temperatures please consult ACE.

Safety information: Mounting screw should additionally be secured with Loctite.


On request: Special strokes, -characteristics, -spring rates, -sizes and -materials.



TR-L

Profile Dampers TR-L

Radial Damping, Long Version

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Ordering Example	TR66-40L-2
TUBUS Radial	<u>+ + + + +</u>
Outer-Ø 2.60" (66 mm)	
Stroke 1.57" (40 mm)	
Long Version	
Length 2 = 12.01" (305 mm)	

Line Emergency Stop I East Stroke max. A B C D E L _M TYPES Nm/cycle Nm/cycle mm figure 14.0 55 80 143 58 40 55 figure 14.0 102.0 8 102 8 102 8 102 8 <th>M M5 M5 M8 M8 M8 M8 M8</th> <th>Weight kg 0.029 0.061 0.101 0.284 0.580 0.809</th>	M M5 M5 M8 M8 M8 M8 M8	Weight kg 0.029 0.061 0.101 0.284 0.580 0.809
¹ E ₃ E ₃ Stroke max. A B C D E L _M TYPES Nm/cycle Nm/cycle mm fitted states	M5 M5 M8 M8 M8	kg 0.029 0.061 0.101 0.284 0.580
TR29-17L7.210.91725802938405TR43-25L14.032.72537804358405TR63-43L21.932.04355806387405TR66-40L-1102.0143.0405915266871028TR66-40L-2204.0286.0405930566872548	M5 M5 M8 M8 M8	0.029 0.061 0.101 0.284 0.580
TR43-25L14.032.72537804358405TR63-43L21.932.04355806387405TR66-40L-1102.0143.0405915266871028TR66-40L-2204.0286.0405930566872548	M5 M5 M8 M8 M8	0.061 0.101 0.284 0.580
TR63-43L21.932.04355806387405TR66-40L-1102.0143.0405915266871028TR66-40L-2204.0286.0405930566872548	M5 M8 M8 M8	0.101 0.284 0.580
TR66-40L-1 102.0 143.0 40 59 152 66 87 102 8 TR66-40L-2 204.0 286.0 40 59 305 66 87 254 8	M8 M8 M8	0.284 0.580
TR66-40L-2 204.0 286.0 40 59 305 66 87 254 8	M8 M8	0.580
	M8	
		0.809
TR66-40L-3 306.0 428.0 40 59 457 66 87 406 8	M8	
TR66-40L-4 408.0 571.0 40 59 610 66 87 559 8		1.064
TR66-40L-5 510.0 714.0 40 59 762 66 87 711 8	M8	1.344
TR76-45L-1 145.0 203.0 45 68 152 76 100 102 8	M8	0.380
TR76-45L-2 290.0 406.0 45 68 305 76 100 254 8	M8	0.696
TR76-45L-3 435.0 609.0 45 68 457 76 100 406 8	M8	1.130
TR76-45L-4 580.0 812.0 45 68 610 76 100 559 8	M8	1.430
TR76-45L-5 725.0 1,015.0 45 68 762 76 100 711 8	M8	1.820
TR83-48L-1 180.0 252.0 48 73 152 83 106 102 8	M8	0.480
TR83-48L-2 360.0 504.0 48 73 305 83 106 254 8	M8	0.869
TR83-48L-3 540.0 756.0 48 73 457 83 106 406 8	M8	1.380
TR83-48L-4 720.0 1,008.0 48 73 610 83 106 559 8	M8	1.810
TR83-48L-5 900.0 1,260.0 48 73 762 83 106 711 8	M8	2.260
TR99-60L-1 270.0 378.0 60 88 152 99 130 102 8	M8	0.589
TR99-60L-2 540.0 756.0 60 88 305 99 130 254 8	M8	1.164
TR99-60L-3 810.0 1,134.0 60 88 457 99 130 406 8	M8	1.940
TR99-60L-4 1,080.0 1,512.0 60 88 610 99 130 559 8	M8	2.660
TR99-60L-5 1,350.0 1,890.0 60 88 762 99 130 711 8	M8	3.100
TR99-60L-6 1,620.0 2,268.0 60 88 914 99 130 864 8	M8	3.744
TR99-60L-7 1,890.0 2,646.0 60 88 1,067 99 130 1,016 8	M8	4.300
TR143-86L-1 600.0 840.0 86 127 152 143 191 76 22	M16	1.570
TR143-86L-2 1,200.0 1,680.0 86 127 305 143 191 203 22	M16	2.840
TR143-86L-3 1,800.0 2,520.0 86 127 457 143 191 355 22	M16	3.880
TR143-86L-4 2,400.0 3,360.0 86 127 610 143 191 508 22	M16	5.420
TR143-86L-5 3,000.0 4,200.0 86 127 762 143 191 660 22	M16	7.070
TR143-86L-6 3,600.0 5,040.0 86 127 914 143 191 812 22	M16	8.370
TR143-86L-7 4,200.0 5,880.0 86 127 1,067 143 191 965 22	M16	9.480
TR188-108L-1 1,100.0 1,540.0 108 165 152 188 245 76 26	M16	2.479
TR188-108L-2 2,200.0 3,080.0 108 165 305 188 245 203 26	M16	4.035
TR188-108L-3 3,300.0 4,620.0 108 165 457 188 245 355 26	M16	7.210
TR188-108L-4 4,400.0 6,160.0 108 165 610 188 245 508 26	M16	9.820
TR188-108L-5 5,500.0 7,700.0 108 165 762 188 245 660 26	M16	11.390
TR188-108L-6 6,600.0 9,240.0 108 165 914 188 245 812 26	M16	13.930
TR188-108L-7 7,700.0 10,780.0 108 165 1,067 188 245 965 26	M16	15.940

¹ Max. energy capacity per cycle for continous use.

125

Q

TUBUS TR-HD

Compact powerhouse in solid material

Radial Damping, Heavy Duty Version Energy capacity 405 Nm/Cycle to 11,840 Nm/Cycle Maximum stroke 12 mm to 44 mm

Impact and collision protection: The TR-HD profile dampers are stressed in the same way as the basic model TR but offer a higher force and energy absorption with a shorter damping distance thanks to the solid design. Different damping characteristic curves can be achieved with two different co-polyester elastomer hardness levels. The slightly oval (bi-concave) shape also ensures a softer force intake.

This product family absorbs a lot of energy despite the low height: a range of 405 Nm to 11,840 Nm is progressively covered by strokes of 12 mm to 44 mm. Delivered with two included screws, the damper can be easily and quickly installed both horizontally or vertically. The drill hole distance can be adapted if required.

These dampers are used in agricultural technology and on shovels or break joints on construction machines as well as on loading and lifting or similar equipment.

Technical Data

Energy capacity: 405 Nm/Cycle to 11,840 Nm/Cycle

Energy absorption: 43 % to 72 % Dynamic force range: 78.800 N to

812,900 N Operating temperature range: -40 °C to

90 °C Construction size: 42 mm to 117 mm

Mounting: In any position

Material hardness rating: Shore 40D, Shore 55D

Material: Profile body: Co-Polyester Elastomer

Environment: Resistant to microbes, seawater or chemical attack. Excellent UV and ozone resistance. Material does not absorb water or swell.

Impact velocity range: Max. 5 m/s

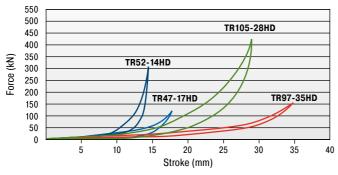
Torque max.: M10: 7 Nm M12: 12 Nm

Application field: Offshore industry, Agricultural machinery, Impact panels, Conveyor systems, Stacking units, Shipbuilding, Shovels or articulated joints for construction machinery, Transport roads, Loading and lifting equipment **Note:** Suitable for emergency stop applications and for continous use. For applications with preloading and increased temperatures please consult ACE.

Safety information: Mounting screw should additionally be secured with Loctite.

On request: Special strokes, -characteristics, -spring rates, -sizes and -materials.

Radial Damping, Heavy Duty Version


TR-HD

Characteristics

TUBUS TR-HD

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

TA	Max. Stroke	
TU	IBUS	A
м —		L _M
-	- C	ł

TR63-24HD **Ordering Example** TUBUS Radial Outer-Ø 2.48" (63 mm) . Stroke 0.94" (24 mm) Heavy Duty Version

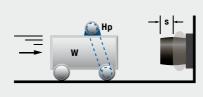
Performance and Dimensions

	1 E ₃	Emergency Stop E _s	F max. static	Stroke max.	А	В	С	D	Е	I.	м	Weight
TYPES	Nm/cycle	Nm/cycle		mm	mm	mm	mm	mm	mm	mm	IVI	kg
TR42-14HD	405	567	63,900	14	34	148	42	59	102	20	M10	0.214
TR47-12HD	857	1,200	149,600	12	31	150	47	58	102	19	M10	0.224
TR47-17HD	850	1,190	122,100	17	32	150	47	70	102	24	M10	0.224
TR52-14HD	1,634	2,288	304,500	14	29	153	52	69	102	22	M10	0.224
TR57-21HD	1,194	1,672	104,800	21	48	149	57	79	102	18	M10	0.384
TR62-15HD	1,790	2,506	245,000	15	40	153	62	77	102	16	M10	0.374
TR62-19HD	2,940	4,116	389,900	19	41	152	62	94	102	16	M10	0.320
TR63-24HD	2,061	2,885	194,400	24	46	153	63	92	102	20	M10	0.377
TR72-26HD	1,700	2,380	124,800	26	59	149	72	98	102	23	M12	0.560
TR79-20HD	2,794	3,912	289,300	20	54	153	79	98	102	24	M12	0.640
TR79-31HD	2,975	4,165	226,600	31	58	155	79	112	102	23	M12	0.530
TR85-33HD	2,526	3,536	146,100	33	71	150	85	111	102	23	M12	0.710
TR89-21HD	4,438	6,213	477,400	21	48	162	89	112	102	22	M12	0.630
TR90-37HD	3,780	5,292	240,700	37	69	155	90	128	102	23	M12	0.820
TR93-24HD	3,421	4,789	302,500	24	64	155	93	115	102	23	M12	0.790
TR97-31HD	7,738	10,833	575,200	31	63	159	97	129	102	21	M12	0.870
TR97-35HD	2,821	3,949	152,800	35	82	151	97	131	102	20	M12	1.060
TR102-44HD	4,697	6,576	254,500	44	81	156	102	147	102	22	M12	1.050
TR105-28HD	5,641	7,897	427,600	28	72	156	105	126	102	21	M12	1.000
TR117-30HD	8,457	11,840	639,100	30	66	166	117	143	102	25	M12	1.080

Issue 04.2018 - Specifications subject to change

Application Examples

TUBUS TA


Safe end position damping

ACE TUBUS profile dampers protect the integrated loading station on a new high speed machining centre. The ACE TUBUS damper is designed to prevent overrun on the high speed loading station of a Camshaft machining centre used in the automobile industry. In the event that the drive train fails during operation or incorrect data is inputted the ACE TUBUS damper absorbs the impact preventing costly damage to the machine. The TA98-40 TUBUS damper impressed engineers with this exceptionally long service life in operation. When used as an emergency stop the TUBUS damper can absorb up to 73 % of the impact energy.

Safety with ultra high speed operation

TUBUS TS Safe braking of maintenance boats

The maintenance of wind turbines in open seas has long resulted in damage to maintenance boats. Because of impact velocity and swell, an increase in the boat's mass of up to 20 percent must be taken into account when landing on a rigid mooring structure. It is only since the landing operation has been carried out with the aid of the ACE company's TUBUS series that cable repair and maintenance work on wind turbines has been made safe for both personnel and equipment. TUBUS of the type TS84-43 are seawater resistant and can withstand ambient temperatures from -40 °C to + 90 °C.

Seawater-resistant, robust TUBUS profile dampers made of co-polyester elastomer allow boats and crew to dock safely Wals Diving and Marine Service, 1970AC ljmuiden, Netherlands

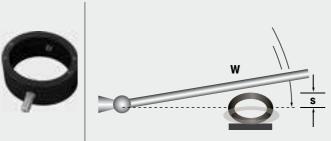
Application Examples

TUBUS TS

Protection of drive used in space treadmill

When training in zero gravity, a harness with bungee cords is used to ensure that trainees do not become disengaged. Three ACE profile dampers with a linear-working facility are utilized in this case. One so-called TUBUS is positioned in the pneumatic cylinder, while the other two are put in place in the rest of the system. All the dampers have the task of protecting the system if the treadmill drive belts become damaged. Otherwise, the cylinder would reach a very high speed and become seriously damaged at the end of the stroke.

TUBUS are used to protect a fitness machine in zero gravity QinetiQ Space nv, 9150 Kruibeke, Belgium



TUBUS TR Gentle damping for electric scooters

TUBUS profile dampers make driving an e-scooter a real experience. The footboard of an electric scooter should be dampened to enable the driver to experience a comfortable ride even over potholes and other bumpy surfaces. Ideally, the characteristic line should be furnished with a soft increase in force over a long stroke. The elegant look of the scooter as well as the folding mechanism designed to save space have not allowed the use of feasible damper solutions up to now. Inferior alternatives such as rubber dampers made of polyurethane or simple steel springs could not be considered from the start. The TUBUS profile damper TR52-32H offered the perfect solution with its compact construction design paired with progressive damping action.

Profile dampers increase the riding comfort of an electric scooter

Special Profile Dampers

Cost-effective damping for your pressing tools

ACE provides TUBUS profile dampers in many variations. Special solutions for presses can now be cost-effectively achieved with down holder dampers, damping plugs, lift dampers and press dampers from ACE.

They replace the PU-springs previously used in the automotive industry. It was no longer possible for them to fulfil the required tasks due to the higher return stroke speeds in modern pressing tools. Made of co-polyester elastomers, the TUBUS special takes care of the protection of mounting bolts and insert bolts much more reliably. On the one hand they protect a so-called down holders during the return stroke after the forming of sheet metal parts, and on the other they function as protection for hoisting lifters.

High reliability

Long service life

High power and energy absorption Efficient working through higher cycle rates Extreme abrasion hardness and sheer strength Noise reduction

Product Families

TUBUS Special Profile Dampers

A wide range of solutions for your tools

Small but effective: These versatile, custom-manufactured components make all the difference during sheet metal forming in the automotive and tool industries thanks to long service lives and high power absorption.

TUBUS Down Holder Dampers

The innovation as a substitute for overburdened PU springs

The axial-functioning elements are ideal for different diameters of mounting bolts from M10 to M30 in the press tools. They increase clock rates, service lives and reliability during increased cushioning strokes there.

TUBUS Lift Dampers

The brother of the down holder damper

Used in the end position damping in ProgDie presses, they sit on the mounting bolts of the spring-loaded belt guide rails or hoisting lifters in the bottom part of the tool of the follow-on composite tool, protect it and accelerate production.

TUBUS Damping Plugs

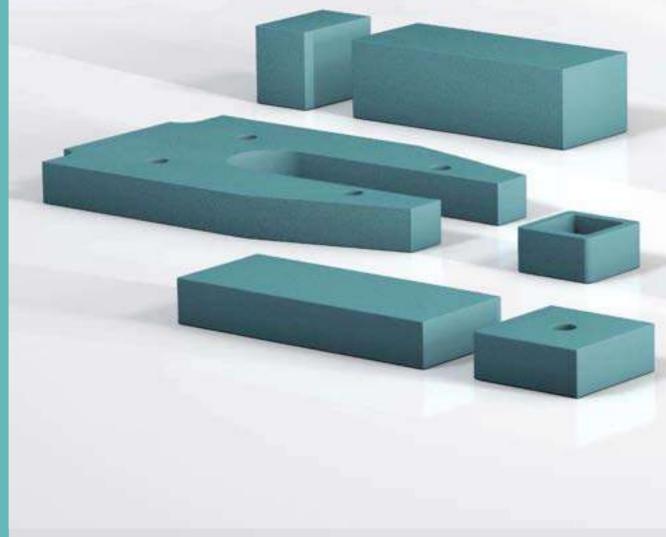
A special kind of emergency plug

These side-mounted, radial damping elements also protect the mounting bolts and insert bolts during the opening of the pressing tools. They are available in four different sizes and are used in large tools.

TUBUS Press Dampers

When a side effect (nearly) becomes the main thing

All TUBUS specials additionally reduce noise. In press dampers, used particularly in eccentric presses by manufacturers of large household appliances, this is however the main task. Screwed into a hole pocket, they also effectively protect the tools.



Damping Pads

Customized damping technology

With damping pads from the SLAB series, ACE provides solutions to effectively slow down loads impacting large and small surfaces. This means that these products are found in a wide range of damping technologies from ACE where oscillation begins or where damaging impacts in construction designs need to be slowed over a large surface.

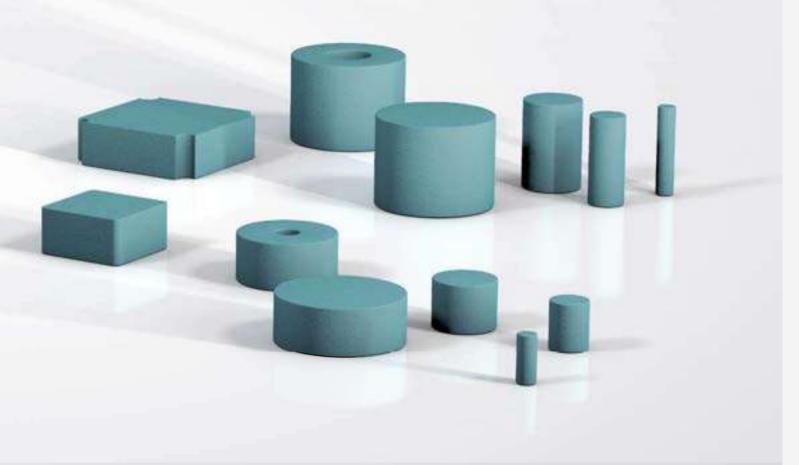
The ACE SLAB pads, available to choose in any size, absorb static loads from 3 to 30 N/cm² aand can be either cut to size according to each requirement or designed as a molded part. Simply use an adhesive to install. The standard plate heights are between 12.5 and 25 mm. Many different coatings clear the way for numerous applications and not least because they can be used in a temperature range from -5 °C to 50 °C.

Individual Pad Cutting

SLAB pads pre-assembled for each project

Whether pads, cuts or drawing parts, stocked SLAB pads in combination with our freely programmable cutting machine ensure maximum flexibility with excellent delivery speed.

Fast, flexible and adapted to your conditions.


Can be integrated quickly and cost-effectively

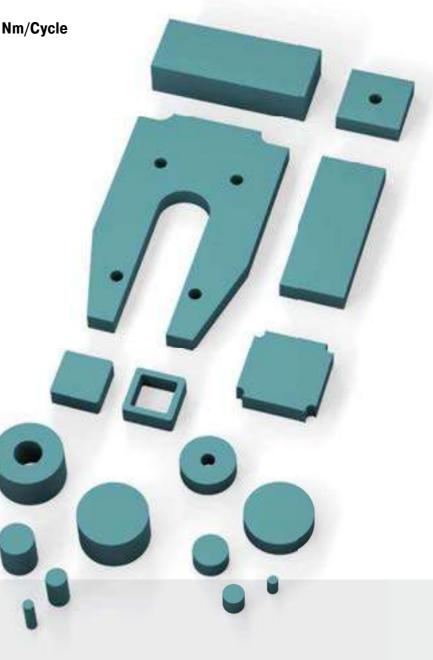
Immense inner damping

Pad thicknesses up to 80 mm on request

Can be assembled with CNC cutting machines

Patented formula

SLAB 030 to SLAB 300


Energy absorption in pad format

Connectable and Combinable Energy capacity 3.1 Nm/Cycle to 210 Nm/Cycle Stroke 6.5 mm to 12.5 mm

Tailor made damping material in pad format: SLAB damping pads are made of a viscoelastic PUR-material. They absorb impact loads extremely effectively and are also suitable for insulating or damping vibration.

The pads of the product family SL-030 to SL-300 are quickly adapted to the relevant type of application. This is in part achieved through the configuration of the calculating tool or directly by the ACE specialist engineers. Furthermore, this is possible because the standard material can be cut exactly and quickly to any customer requirement with our new cutting system. It is also possible to obtain a sample to find an optimum solution.

The SLAB damping pads are proven impact or collision protection. They are used on luggage and transport belts, conveyor systems, pneumatic, electromechanical and hydraulic drives as well as on linear carriages.

Technical Data

Energy capacity: 3.1 Nm/Cycle to 210 Nm/Cycle

Standard density:

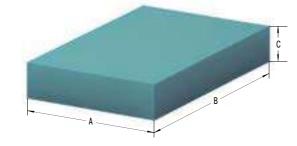
 $SL-030 = approx. 220 \ kg/m^3 \\ SL-100 = approx. 440 \ kg/m^3 \\ SL-300 = approx. 680 \ kg/m^3$

Standard colour: Green

Dimensions: Widths: up to 1,500 mm Lengths: up to 5,000 mm Thicknesses: 12.5 mm and 25 mm

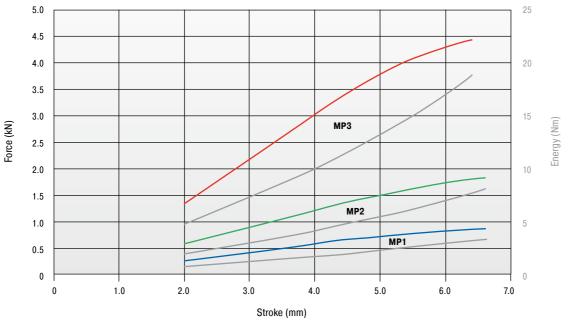
Environment: Resistant against ozone and UV radiation. Chemical resistancy on request.

Operating temperature range: -5 °C to 50 °C


Material: Profile body: Mixed cellular PUR-Elastomer (polyurethane)

Application field: Linear slides, Handling modules, Luggage and transport belts, Impact panels, Pipeline insulation, Foundation mounting, Conveyor technology, Electronic systems and controls, Medical technology, Buildings

Note: Possibilities for cutting: Water jet cutting, stamping, splitting, sawing and drilling **Safety information:** Fire rating: B2, normally flammable, according to DIN 4102 **On request:** Special versions with further dimensions such as thicknesses, colours, shapes and drawing parts e.g. curves. Different wear layers.


Connectable and Combinable

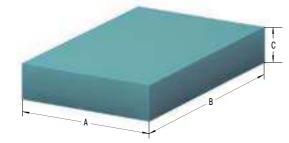
SL-030-12

Characteristics

Type SL-030-12 Force-Stroke Characteristic (dynamic) Stroke Utilization 6.5 mm

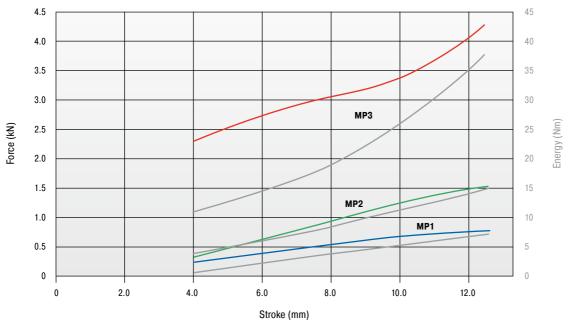
Load data Dynamic load, impact velocity: approx. 1 m/s

 Area	10,000 mm ²
 Area	5,000 mm ²
 Area	2,500 mm ²


The chosen damping plate should be tested by the customer on the specific application.				Ordering ACE-SLA Material Material Custome (D-Numb	SI	030-12-Dxxx			
r en formance and				D	0	A	Oten dead dearity	Datum Time	Mainh4
TYPES	¹ E₃ max. Nm/cycle	¹ Stroke mm	A mm	B mm	C mm	Area mm ²	Standard density kg/m ³	Return Time s	Weight kg
SL-030-12-D-MP1	3.1	6.5	50.0	50.0	12.5	2,500	200	4	0.006
SL-030-12-D-MP2	8.0	6.5	70.7	70.7	12.5	5,000	200	4	0.013
SL-030-12-D-MP3	19.0	6.5	100.0	100.0	12.5	10,000	200	4	0.025

Damping Pads SL-030-25

Connectable and Combinable

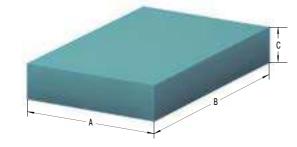

SL-030-25

Characteristics

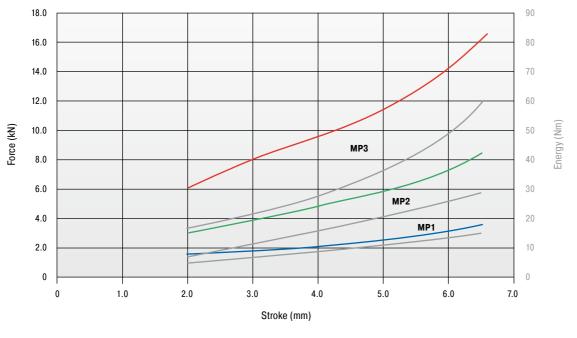
Type SL-030-25 Force-Stroke Characteristic (dynamic) Stroke Utilization 12.5 mm

Load data Dynamic load, impact velocity: approx. 1 m/s

 Area	10,000 mm ²
 Area	5,000 mm ²
 Area	2,500 mm ²


The chosen damping plate should be tested by the customer on the specific application.

Performance an	d Dimensions								
	¹ E ₃ max.	¹ Stroke	А	В	С	Area	Standard density	Return Time	Weight
TYPES	Nm/cycle	mm	mm	mm	mm	mm ²	kg/m³	s	kg
SL-030-25-D-MP1	6.7	12.5	50.0	50.0	25.0	2,500	200	5	0.013
SL-030-25-D-MP2	15.0	12.5	70.7	70.7	25.0	5,000	200	5	0.025
SL-030-25-D-MP3	42.0	12.5	100.0	100.0	25.0	10,000	200	5	0.050


Connectable and Combinable

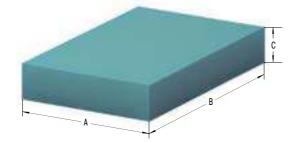
SL-100-12

Characteristics

Type SL-100-12 Force-Stroke Characteristic (dynamic) Stroke Utilization 6.5 mm

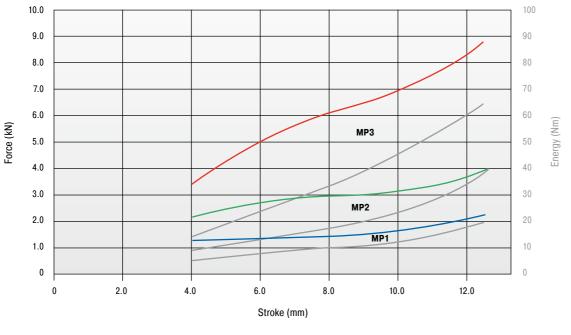
Load data Dynamic load, impact velocity: approx. 1 m/s

		10,000 mm ²
,	Area	5,000 mm ²
	Area	2,500 mm ²


The chosen damping plate should be tested by the customer on						g Example	SL	SL-100-12-Dxxx		
the specific appl	ication.				ACE-SLA	В		^	† † †	
					Material	Туре				
				Material ⁻	Thickness 0.49	9" (12.5 mm)				
				Custome						
					(D-Numb	er is assigned	by ACE)			
Performance and	d Dimensions									
	¹ E ₃ max.	¹ Stroke	Α	В	С	Area	Standard density	Return Time	Weight	
TYPES	Nm/cycle	mm	mm	mm	mm	mm ²	kg/m ³	S	kg	
SL-100-12-D-MP1	15.0	6.5	50.0	50.0	12.5	2,500	440	4	0.014	
SL-100-12-D-MP2	30.0	6.5	70.7	70.7	12.5	5,000	440	4	0.028	
SL-100-12-D-MP3	60.0	6.5	100.0	100.0	12.5	10.000	440	4	0.055	

Damping Pads SL-100-25

Connectable and Combinable


SL-100-25

Characteristics

Type SL-100-25 Force-Stroke Characteristic (dynamic) Stroke Utilization 12.5 mm

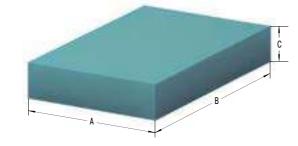
Load data	
Dynamic load	impact velocity: approx. 1 m/s

Area	10,000 mm ²
Area	5,000 mm ²
Area	2,500 mm ²

Ordering Example

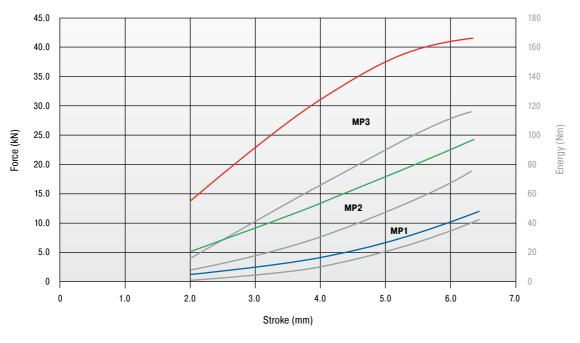
The chosen damping plate should be tested by the customer on the specific application.

SL-100-25-Dxxxx


ACE-SLAB _______ Material Type ______ Material Thickness 0.98" (25 mm) ______ Customers Specific Dimension/Shape ______ (D-Number is assigned by ACE)

Performance and Dimensions ¹ E, max. ¹ Stroke A

	¹ E ₃ max.	1 Stroke	А	В	С	Area	Standard density	Return Time	Weight
TYPES	Nm/cycle	mm	mm	mm	mm	mm ²	kg/m³	s	kg
SL-100-25-D-MP1	20.0	12.5	50.0	50.0	25.0	2,500	440	5	0.028
SL-100-25-D-MP2	40.0	12.5	70.7	70.7	25.0	5,000	440	5	0.055
SL-100-25-D-MP3	63.0	12.5	100.0	100.0	25.0	10,000	440	5	0.110


Connectable and Combinable

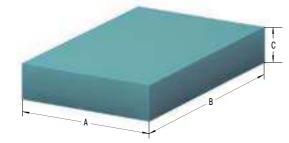
SL-300-12

Characteristics

Type SL-300-12 Force-Stroke Characteristic (dynamic) Stroke Utilization 6.5 mm

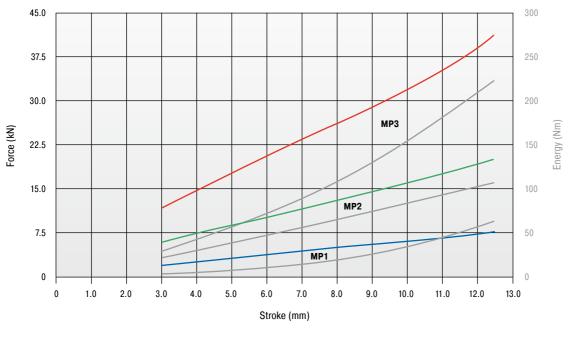
Load data Dynamic load, impact velocity: approx. 1 m/s

 Area	10,000 mm ²
 Area	5,000 mm ²
 Area	2,500 mm ²


The chosen damping plate should be tested by the customer on the specific application.				Ordering Example ACE-SLAB Material Type Material Thickness 0.49" (12.5 mm) Customers Specific Dimension/Shape (D-Number is assigned by ACE)			SL	-300-12-Dxx	
Performance an	nd Dimensions	i							
	¹ E ₃ max.	¹ Stroke	A	В	С	Area	Standard density	Return Time	Weight
TYPES	Nm/cycle	mm	mm	mm	mm	mm ²	kg/m ³	S	kg
SL-300-12-D-MP1	38.0	6.5	50.0	50.0	12.5	2,500	680	3	0.021
SL-300-12-D-MP2	65.0	6.5	70.7	70.7	12.5	5,000	680	3	0.043
SL-300-12-D-MP3	121.0	6.5	100.0	100.0	12.5	10,000	680	3	0.085

Damping Pads SL-300-25

Connectable and Combinable


SL-300-25

Characteristics

Type SL-300-25 Force-Stroke Characteristic (dynamic) Stroke Utilization 12.5 mm

Load data Dynamic load, impact velocity: approx. 1 m/s

Area	10,000 mm ²
	5,000 mm ²
Area	2,500 mm ²

The chosen damping plate should be tested by the customer on the specific application.

Performance and Dimensions

	¹ E ₃ max.	¹ Stroke	Α	В	С	Area	Standard density	Return Time	Weight
TYPES	Nm/cycle	mm	mm	mm	mm	mm ²	kg/m³	s	kg
SL-300-25-D-MP1	59.0	12.5	50.0	50.0	25.0	2,500	680	4	0.043
SL-300-25-D-MP2	101.0	12.5	70.7	70.7	25.0	5,000	680	4	0.085
SL-300-25-D-MP3	210.0	12.5	100.0	100.0	25.0	10,000	680	4	0.170

Bonding of Polyurethane (PUR) Elastomers

Cellular and compact parts of polyurethane (PUR) elastomers SLAB damping pads can be bonded according to the following recommendations. If treatment instructions are followed, the strengths of the bonded joint can be equivalent to the elastomer material itself.

1. General Information

To achieve the required bonding strength it is necessary to ensure the correct adhesive is chosen for each individual application.

Contact bonding material

Thin adhesive film, with little filling of the gaps. Correcting or moving of the areas covered with bonding material is no longer possible after the first contact is made (contact effect).

Once a bonding is separated, the bonding process must be renewed.

Please note that creases, ripples or blisters cannot be straightened once the contact is made.

Hardening bonding material

(As thin as possible) the film of glue fills the joint. The gluing can be done after the edges are brought together.

2. Preparation

The preparation of bonding surfaces is of significant importance for the bonding strength. The surfaces must be adapted to each other and available in plain, clean form.

Careful removal of

Adhesive remnants, oil, fat, separating agents, dirt, dust, scales, molding layers, protective coating, finish, paint, sweat etc.

Mechanical support

Stripping, brushing, scraping, grinding, sandblasting.

Chemical support

Degreasing (washing off with grease remover), etching, priming; pay attention to chemical resistancy on the following page!

In general, SLAB damping pads in sheet form can be bonded without pretreatment. Molded parts, with or without special skin, have to be cleaned from left-over separating agents, if necessary by grinding. When bonding with other materials like plastic, wood, metal or concrete, mechanical and/or chemical additives have to be used.

The adhesive has to be prepared according to the formula, observing the manufacturer's recommendations. The adhesive film is also to be carefully applied pursuant to these details. (Tools: brush, spatula, adhesive spreader, airless spray gun).

Contact bonding material

Apply the non-gap-filling adhesive film to both bonding surfaces – the thinner, the better. To close the pores of low density materials, two layers may be necessary.

Hardening bonding material

Apply evenly. Possible irregularities can be compensated by the film thickness.

3. Bonding

When using contact bonding material, the flash off time has to be kept in mind. Especially, with systems containing water instead of usual solvents, the adhesive film must be as dry as possible in order to pass the 'finger test' – no marks appear when touching the adhesive surface. When using hardening bonding material, the parts have to be joined immediately after applying the bonding material.

4. Pressing

Contact bonding material Hardening bonding material

Contact pressure up to 0.5 N/mm² Fix firmly

It is important to carefully follow the manufacturer's instructions with regard to processing temperature, hardening time and earliest possible loading.

5. Selection of Approved Bonding Materials

Because of the variety of materials that can be bonded together as well as numerous suitable bonding materials, we refer you to a worldwide leading producer of bonding and sealing materials.

Sika U.S. Sika Corporation 201 Polito Avenue Lyndhurst, NJ 07071 T +1 (800) 933-SIKA (7452) www.usa.sika.com **Technical Information**

Chemical Resistance

Test (following DIN 53428)

Exposure time of the medium: 6 weeks at room temperature, but for concentrated acids and bases as well as solvents: 7 days at room temperature

Evaluation Criteria

Changing of tensile strength and elongation of break (dry samples), change in volume

Evaluation Standard

1	Excellent resistance	change in characteristics <10 %
2	Good resistance	change in characteristics between 10 % and 20 %
3	Conditional resistance	change in characteristics partly above 20 %
4	Not resistant	change in characteristics all above 20 %

All information is based on our current knowledge and experiences. We reserve the rights for changes towards product refinement.

Chemical Resistance

Water/Watery Solutions	SL-030 to SL-300
Water	1
Iron (III) chloride 10 %	1
Sodium carbonate	1
Sodium chlorate 10 %	1
Sodium chloride 10 %	1
Sodium nitrate 10 %	1
Tensides (div.)	1
Hydrogen peroxide 3 %	1
Laitance	1
Oils and Greases	
ASTM Oil No. 1	1
ASTM Oil No. 3	1
Laitance	2
Hydraulic oils	depends on consistency/additives
Motor oil	1
Formwork oil	1
High performance grease	1-2
Railroad switch lubricant	1-2
Acids and Bases	
Formic acid 5 %	3
Acetic acid 5 %	2
Phosphoric acid 5 %	1
Nitic acid 5 %	4
Hydrochloric acid 5 %	1
Sulphuric acid 5 %	1
Ammonia solution 5 %	1
Caustic potash solution 5 %	1
Caustic soda solution 5 %	1

Solvents	SL-030 to SL-300
Acetone	4
Diesel/Fuel oil	2
Carburetor fuel/Benzine	3
Glycerin	1
Glycols	1-2
Cleaning solvents/Hexane	1
Methanol	3
Aromatic hydrocarbons	4

Other Factors

Hydrolysis *	1			
Ozone	1			
UV radiation and weathering	1-2			
Biological resistance	1			

* 28 days, 70 °C, 95 % relative humidity

143

Sample Pads and Kits

Description

Sample Kits Part Number

Dimensions

Part Number	Description	Dimensions
250-0800	SL-030-12 Sample Kit	50 x 50 mm / 70.7 x 70.7 mm / 100 x 100 mm x 12.5 mm
250-0801	SL-030-25 Sample Kit	50 x 50 mm / 70.7 x 70.7 mm / 100 x 100 mm x 12.5 mm
250-0802	SL-100-12 Sample Kit	50 x 50 mm / 70.7 x 70.7 mm / 100 x 100 mm x 12.5 mm
250-0803	SL-100-25 Sample Kit	50 x 50 mm / 70.7 x 70.7 mm / 100 x 100 mm x 12.5 mm
250-0804	SL-300-12 Sample Kit	50 x 50 mm / 70.7 x 70.7 mm / 100 x 100 mm x 12.5 mm
250-0805	SL-300-25 Sample Kit	50 x 50 mm / 70.7 x 70.7 mm / 100 x 100 mm x 12.5 mm
250-0806	SL-170-12/25 Sample Kit	220 mm x 150 mm x 12.5 mm & 25 mm
250-0807	SL-210-12/25 Sample Kit	220 mm x 150 mm x 12.5 mm & 25 mm
250-0808	SL-275-12/25 Sample Kit	220 mm x 150 mm x 12.5 mm & 25 mm
250-0809	SL-450-12/25 Sample Kit	220 mm x 150 mm x 12.5 mm & 25 mm
250-0810	SL-600-12/25 Sample Kit	220 mm x 150 mm x 12.5 mm & 25 mm
250-0811	SL-720-12/25 Sample Kit	220 mm x 150 mm x 12.5 mm & 25 mm

1500 mm x 800 mm

70.7 mm x 70.7 mm

100 mm x 100 mm

220 mm x 150 mm

1500 mm x 800 mm

70.7 mm x 70.7 mm

100 mm x 100 mm

220 mm x 150 mm

200 mm x 150 mm

1500 mm x 800 mm

70.7 mm x 70.7 mm

100 mm x 100 mm

220 mm x 150 mm

1500 mm x 800 mm

50 mm x 50 mm

50 mm x 50 mm

50 mm x 50 mm

Additional Information

50 x 50 mm, 70.7 x 70.7 mm, 100 x 100 mm kits include 1 sample each of the MP1, MP2 and MP3. 220 mm x 150 mm x 12.5 mm & 25 mm kits include 1 sample each of the 12 and 25 MP4.

Shock

Shock Absorption Samples (Sold Separately)			Vibration Isolation Samples (Sold Separately)		
Part Number	Description	Dimensions	Part Number	Description	Dimensions
SL-030-12-D-MP1	SL-030-12-D-MP1	50 mm x 50 mm	SL-170-12-F-MP4	SL-170-12-F-MP4	220 mm x 150 mm
SL-030-12-D-MP2	SL-030-12-D-MP2	70.7 mm x 70.7 mm	SL-170-25-F-MP4	SL-170-25-F-MP4	220 mm x 150 mm
SL-030-12-D-MP3	SL-030-12-D-MP3	100 mm x 100 mm	SL-210-12-F-MP4	SL-210-12-F-MP4	220 mm x 150 mm
SL-030-12-D-MP4	SL-030-12-D-MP4	220 mm x 150 mm	SL-210-25-F-MP4	SL-210-25-F-MP4	220 mm x 150 mm
	SL-030-12-D-MP4-V+K*	220 mm x 150 mm	SL-275-12-F-MP4	SL-275-12-F-MP4	220 mm x 150 mm
SL-030-12-D-MP5	SL-030-12-D-MP5	1500 mm x 800 mm	SL-275-25-F-MP4	SL-275-25-F-MP4	220 mm x 150 mm
SL-030-25-D-MP1	SL-030-25-D-MP1	50 mm x 50 mm	SL-450-12-F-MP4	SL-450-12-F-MP4	220 mm x 150 mm
SL-030-25-D-MP2	SL-030-25-D-MP2	70.7 mm x 70.7 mm	SL-450-25-F-MP4	SL-450-25-F-MP4	220 mm x 150 mm
SL-030-25-D-MP3	SL-030-25-D-MP3	100 mm x 100 mm	SL-600-12-F-MP4	SL-600-12-F-MP4	220 mm x 150 mm
SL-030-25-D-MP4	SL-030-25-D-MP4	220 mm x 150 mm	SL-600-25-F-MP4	SL-600-25-F-MP4	220 mm x 150 mm
SL-030-25-D-MP5	SL-030-25-D-MP5	1500 mm x 800 mm	SL-720-12-F-MP4	SL-720-12-F-MP4	220 mm x 150 mm
SL-100-12-D-MP1	SL-100-12-D-MP1	50 mm x 50 mm	SL-720-25-F-MP4	SL-720-25-F-MP4	220 mm x 150 mm
SL-100-12-D-MP2	SL-100-12-D-MP2	70.7 mm x 70.7 mm			
SL-100-12-D-MP3	SL-100-12-D-MP3	100 mm x 100 mm			
SL-100-12-D-MP4	SL-100-12-D-MP4	220 mm x 150 mm			
	SL-100-12-D-MP4-V+K*	200 mm x 150 mm			

SL-100-12-D-MP1	SL-100-12-D-MP1
SL-100-12-D-MP2	SL-100-12-D-MP2
SL-100-12-D-MP3	SL-100-12-D-MP3
SL-100-12-D-MP4	SL-100-12-D-MP4
	SL-100-12-D-MP4-V+K*
SL-100-12-D-MP5	SL-100-12-D-MP5
SL-100-25-D-MP1	SL-100-25-D-MP1
SL-100-25-D-MP2	SL-100-25-D-MP2
SL-100-25-D-MP3	SL-100-25-D-MP3
SL-100-25-D-MP4	SL-100-25-D-MP4
SL-100-25-D-MP5	SL-100-25-D-MP5
SL-300-12-D-MP1	SL-300-12-D-MP1
SL-300-12-D-MP2	SL-300-12-D-MP2
SL-300-12-D-MP3	SL-300-12-D-MP3
SL-300-12-D-MP4	SL-300-12-D-MP4
	SL-300-12-D-MP4-V+K*
SL-300-12-D-MP5	SL-300-12-D-MP5
SL-300-25-D-MP1	SL-300-25-D-MP1
SL-300-25-D-MP2	SL-300-25-D-MP2
SL-300-25-D-MP3	SL-300-25-D-MP3
SL-300-25-D-MP4	SL-300-25-D-MP4
SL-300-25-D-MP5	SL-300-25-D-MP5
* Has a layer for wear prot	tection & adhesive on one

Application Examples

SL-030, TA

Damping combination SLAB and TUBUS

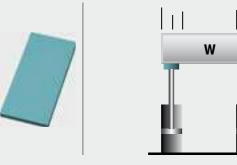
SLAB-TUBUS-Combination ensures fast luggage transport. Airports endeavour to shorten air passengers' waiting times as much as possible. This aim is met with a solution especially developed for luggage transport systems and has solved previous damping issue. Transport carriers with a weight of up to 120 kg can now be moved at the desired conveyor belt speeds. A SLAB-combination of the material SL-030-12(25)-Dxxxx together with two TA40-16 type TUBUS profile dampers are used here.

Fast luggage transport for airport customers

SL-030 Noise reduction

ACE-SLAB damping pads protect man and machine. At the beginning of the construction phase of a modern processing centre at the end position, a 25 kg cable channel collided with force against the housing and produced a deafening noise and mechanical strain on the energy chain. A reliable solution for compliance with the operational parameters was realized with the SL-030-25-Dxxxx type ACE-SLAB damping pads even before the milling machine was finished.


Low-noise energy chain


SL-030

Impact reduction in ring form

ACE-SLAB damping pads make tyre transport safer. Developed for absorbing the impact of forces, the ACE-SLAB damping pads SL-030-121-Dxxxx applied in this tyre testing system are ideal for protecting the sliding parts of the machine during quality tests. The individual customisation of the ring form of the centre arm and simple integration into the equipment also support the decision for applying these innovative absorber elements.

Perfectly fitted machine protection SDS Systemtechnik GmbH, 75365 Calw, Germany

SL-030 Impact protection for large areas

ACE-SLAB damping pads offer impact protection for wooden battens. To protect wooden battens with differing weights and impact speeds of approx. 2 m/s, the SLAB-material SL-030-12-Dxxxx was screwed across the whole surface between two steel sheets in this application. This creates an even damping effect over the whole impact area, which protects the impact surfaces of the battens from an excessive impact load. The minimisation of recoil as well as reduction of noise are further positive side effects of this construction.

Impact protection for wooden battens

Motion Control

Gas Springs – Push Type, Gas Springs – Pull Type Hydraulic Dampers, Hydraulic Feed Controls Rotary Dampers

Custom Control of Hand Forces Customized to suit your applications

The ACE products in this segment enhance the quality of any type of movement. Anyone who wants to raise or lower loads, regulate the feed of an object to the precise millimeter or gently decelerate rotating or linear movements will find the right solution here.

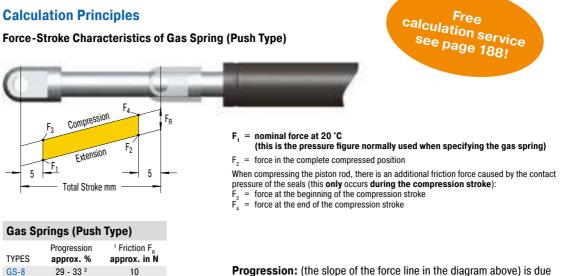
ACE delivers industry leading quality. Our innovative solutions correspond with stringent requirements for ergonomics and individuality, including custom pressurized gas springs.

Industrial Gas Springs – Push Type

The smart way to lift and lower

Anyone who wants to lift or lower loads with control and without excessive strength relies on the industrial gas springs from ACE. These maintenancefree, ready-to-install machine elements, which are available from stock, support sheer muscle power, reliably open and hold.

Available with body diameters of 8 to 70 mm (0.31" to 2.76") and forces from 0 to 13,000 N (2 to 2,925 lbs.), ACE push type gas springs offer a huge variety and maximum service life. The first is achieved thanks to the number of available connections and fittings for simple attachment and the latter with high quality design and materials. Whether they are made of steel or stainless steel, these components make any work easier and are also visually appealing.



Function of a Gas Spring – Push Type

ACE gas springs are individually filled to a predetermined pressure to suit a customer's requirement (extension Force F_1). The cross-sectional area of the piston rod and filling pressure determines the extension force.

During the compression of the piston rod, nitrogen flows through an orifice in the piston from the full bore side of the piston to the annulus. The nitrogen is compressed by the volume of the piston rod. As the piston rod is compressed the pressure increases, so increasing the reaction force (progression). The force depends on the proportional relationship between the piston rod and the inner tube diameter, which is approximately linear.

Progression: (the slope of the force line in the diagram above) is due to the reduction of the internal gas volume as the piston rod moves from its initial position to its fully stroked position. The approx. progression values given above for standard springs can be altered on request.

Effect of termperature: The nominal F_1 figure is given at 20 °C. An increase of 10 °C will increase force by 3.4 %.

Filling tolerances: -20 N to +40 N or 5 % to 7 %. Depending on size and extension force the tolerances can differ.

Industrial Gas Springs – Push Type

13 - 16 ²

20 - 35 ²

30 - 40 ²

24 - 35 ²

30 - 40 ²

63 - 76 ²

38 - 50²

25

¹ Depending on the filling force

² Depending on the stroke

10

20

20

30

30

40

50

50

GS-10

GS-12

GS-15

GS-19

GS-22

GS-28

GS-40

GS-70

GS-8 to GS-70

Valve Technology Individual stroke length and extension forces Hoods, Shutters, Machine housing, Conveyor systems

GS-8-V4A to GS-40-VA

Valve Technology, Stainless Steel With food grade oil according to FDA approval Hoods, Shutters, Machine housing, Conveyor systems

GST-40 Tandem

Valve Technology **Optimized dual force for heavy flaps and wide angle applications** Hoods, Shutters, Machine housing, Conveyor systems

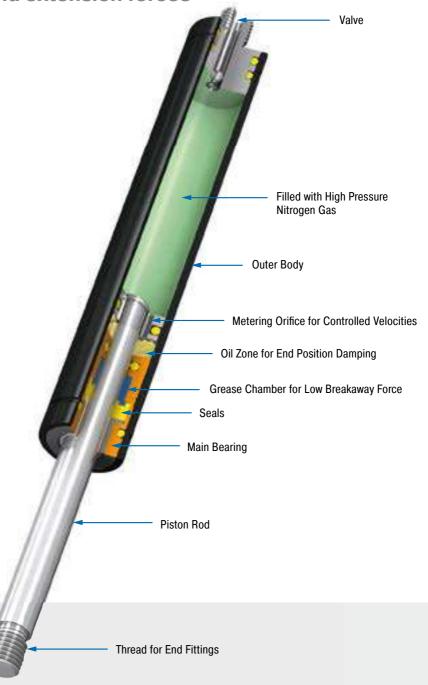
Page 150

Page 160

Page 170

ACE Controls Inc. + 23425 Industrial Park Dr. Farmington + US-48335 Michigan + T +1 800-521-3320 + F +1 248-476-2470 + shocks@acecontrols.com + www.acecontrols.com

GS-8 to GS-70


Individual stroke length and extension forces

Valve Technology Extension force 10 N to 13,000 N Stroke 20 mm to 1,000 mm

Universal and tailor made: ACE industrial gas springs offer perfect support of muscle power with forces from 10 to 13,000 N (2 to 2,923 lbs.) with body diameter of 8 to 70 mm (0.31" to 2.76"). These durable and sealed systems are ready for installation, maintenance-free and filled with pressurized nitrogen gas.

They are filled according to individual customer pressure requirements and may be adjusted later by use of a built-in valve. ACE provides free calculation support and designs the gas springs with mounting points specifically for the particular application. A variety of accessories makes assembly even easier and allows universal application of the gas springs.

ACE industrial gas push type springs are used on covers, lids, or other components. They are used in industrial applications, automation and machine building, medical technology as well as in the electronics, automobile and furniture industries.

Technical Data

Extension force: 10 N to 13,000 N Piston rod diameter: Ø 3 mm to Ø 30 mm

Progression: Approx. 13 % to 76 % (depending on size and stroke)

Lifetime: Approx. 10,000 m

Operating temperature range: -20 $^\circ\text{C}$ to 80 $^\circ\text{C}$

Material: Outer body: Coated steel; Piston rod: Steel or stainless steel with wear-resistant coating; End fittings: Zinc plated steel

Operating fluid: Nitrogen gas and oil

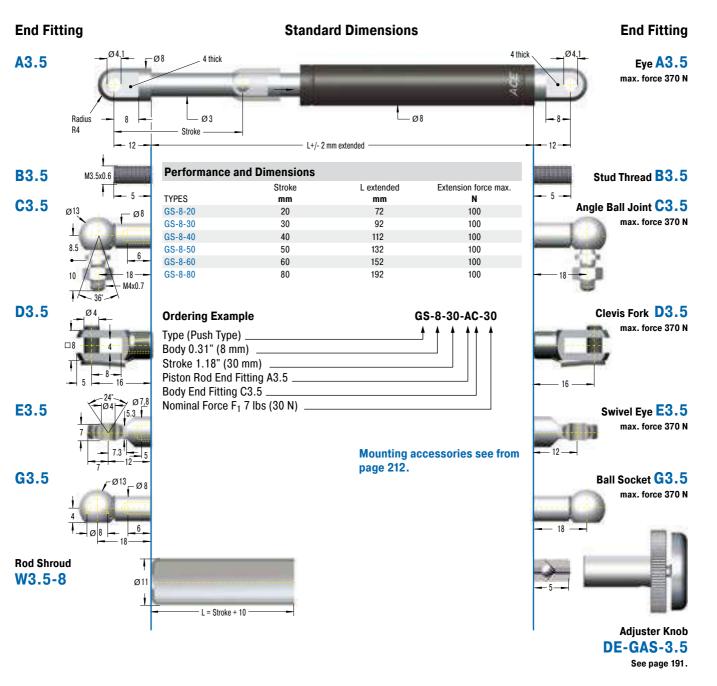
Mounting: We recommend mounting with piston rod downwards to take advantage of the built-in end position damping.

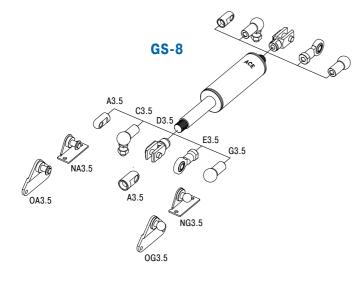
End position damping length: Approx. 5 mm to 70 mm (depending on the stroke)

Positive stop: External positive stop at the end of stroke provided by the customer.

Application field: Hoods, Shutters, Machine housing, Conveyor systems, Control boxes, Furniture industry, Jacking applications, Assembly stations, Vehicle technology, Folding elements

Note: Increased break-away force if unit has not moved for some time.


End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.


Safety information: Gas springs (push type) should not be installed under pre-tension.

On request: Special oils and other special options. Alternative accessories. Different end position damping and extension speed.

Valve Technology, Extension force 10 N to 100 N (compressed up to 133 N)

Technical Data

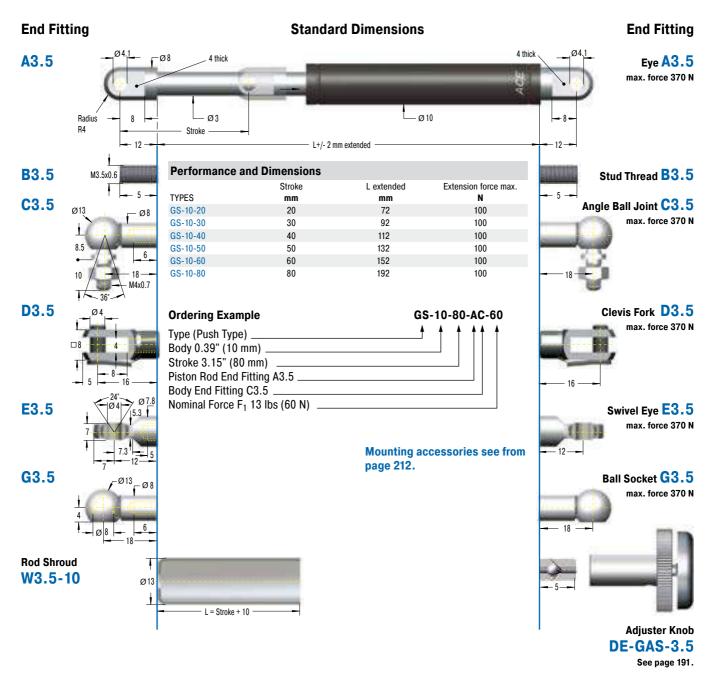
Extension force: 10 N to 100 N (compressed up to 133 N) Progression: Approx. 29 % to 33 %

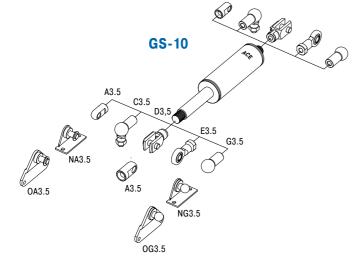
Operating temperature range: -20 °C to 80 °C

Material: Outer body: Coated steel; Piston rod: Stainless steel (1.4301/1.4305, AISI 304/303); End fittings: Zinc plated steel

Mounting: We recommend mounting with piston rod downwards to take advantage of the built-in end position damping.

End position damping length: approx. 5 mm (depending on the stroke)


Positive stop: External positive stop at the end of stroke provided by the customer.


Note: Increased break-away force if unit has not moved for some time.

End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

Valve Technology, Extension force 10 N to 100 N (compressed up to 116 N)

Technical Data

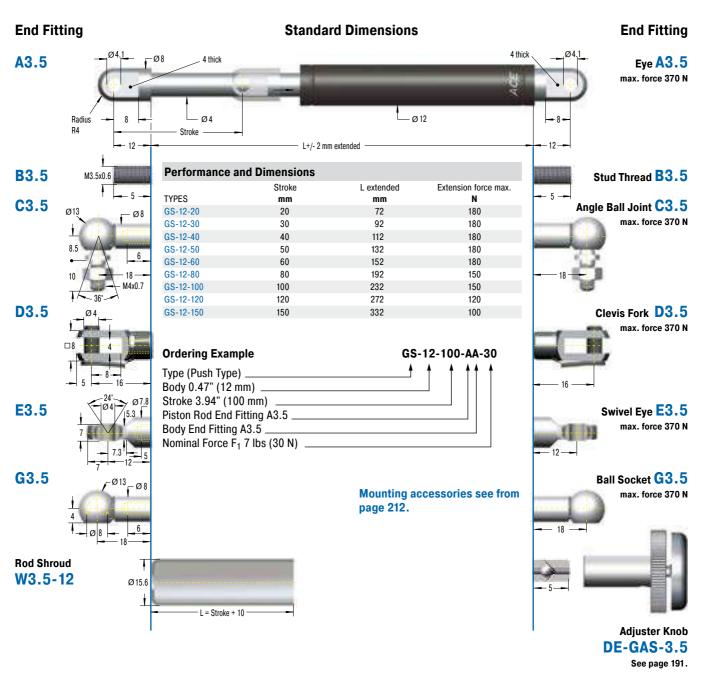
Extension force: 10 N to 100 N (compressed up to 116 N) Progression: Approx. 13 % to 16 %

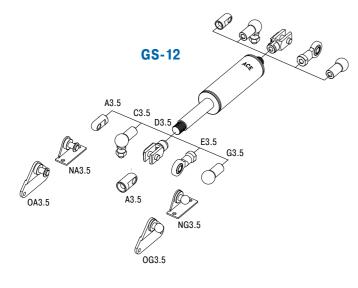
Operating temperature range: -20 °C to 80 °C

Material: Outer body: Coated steel; Piston rod: Stainless steel (1.4301/1.4305, AISI 304/303); End fittings: Zinc plated steel

Mounting: We recommend mounting with piston rod downwards to take advantage of the built-in end position damping.

End position damping length: approx. 5 mm (depending on the stroke)


Positive stop: External positive stop at the end of stroke provided by the customer.


Note: Increased break-away force if unit has not moved for some time. **End fittings:** They are interchangeable and if necessary must be

positively secured by the customer to prevent unscrewing.

Valve Technology, Extension force 15 N to 180 N (compressed up to 243 N)

Technical Data

Extension force: 15 N to 180 N (compressed up to 243 N) Progression: Approx. 20 % to 35 %

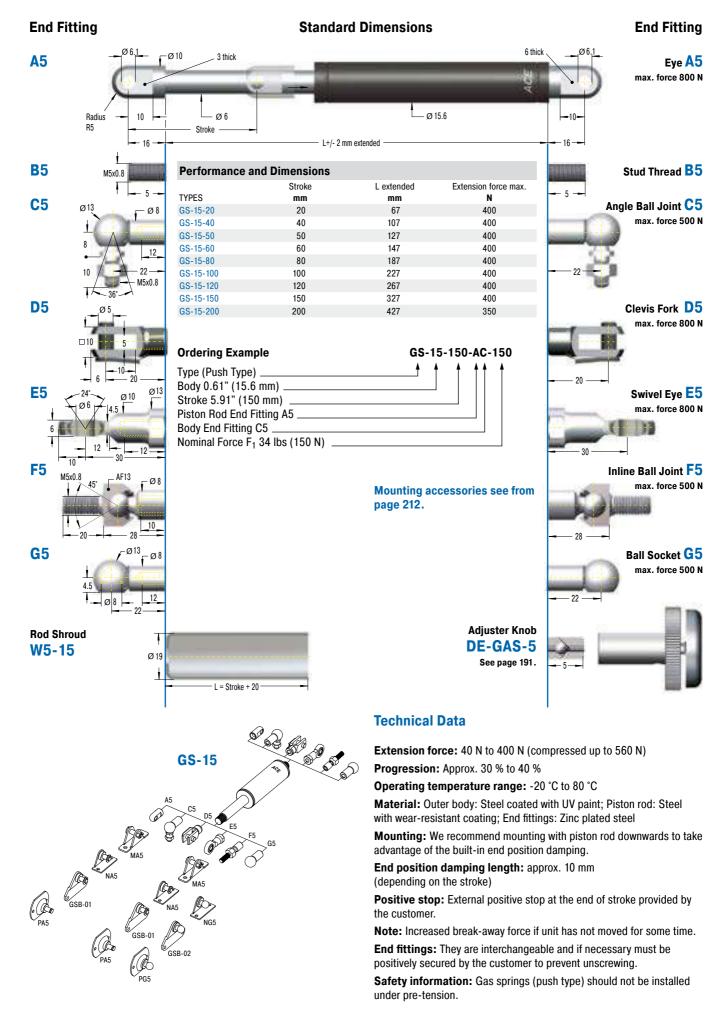
Operating temperature range: -20 °C to 80 °C

Material: Outer body: Coated steel; Piston rod: Stainless steel (1.4301/1.4305, AISI 304/303); End fittings: Zinc plated steel

Mounting: We recommend mounting with piston rod downwards to take advantage of the built-in end position damping.

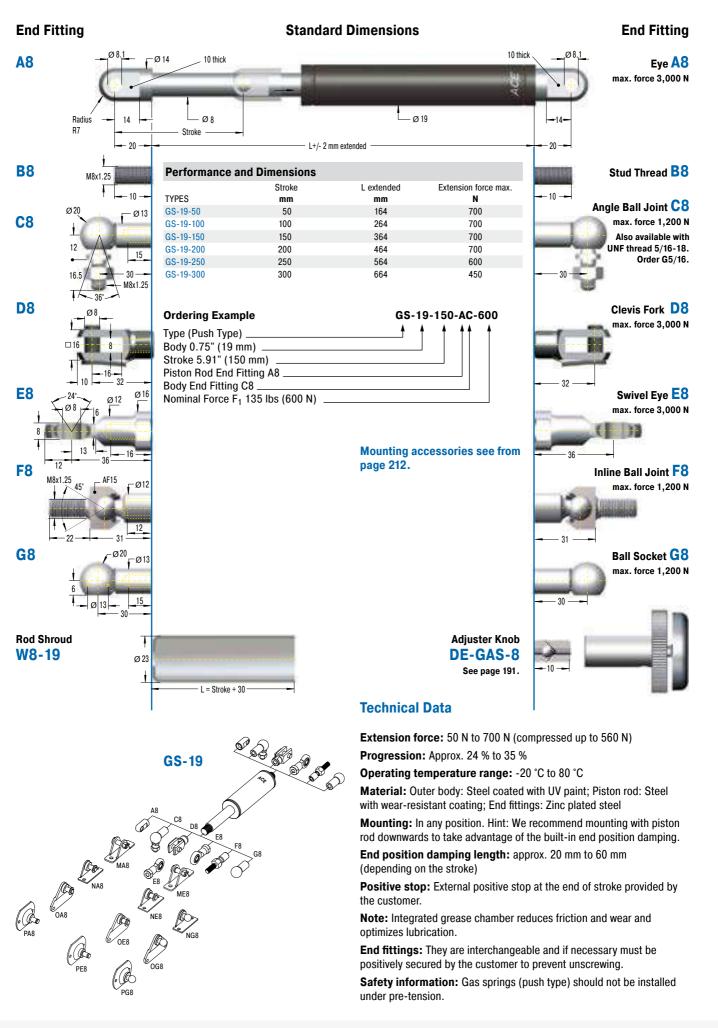
End position damping length: approx. 10 mm (depending on the stroke)

Positive stop: External positive stop at the end of stroke provided by the customer.

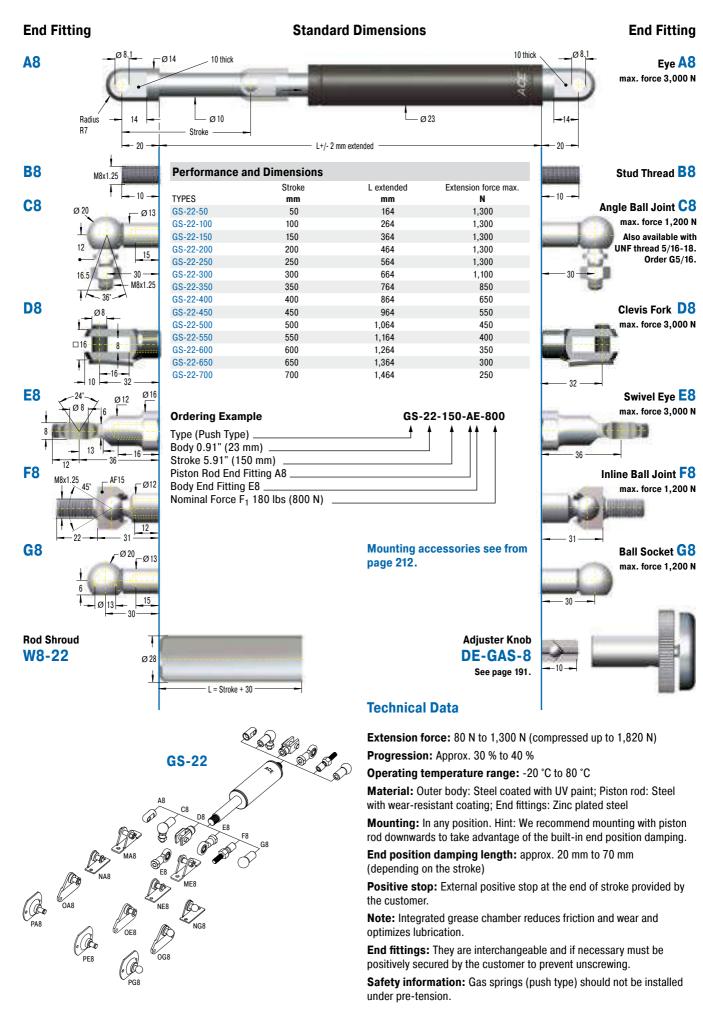

Note: Increased break-away force if unit has not moved for some time.

End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

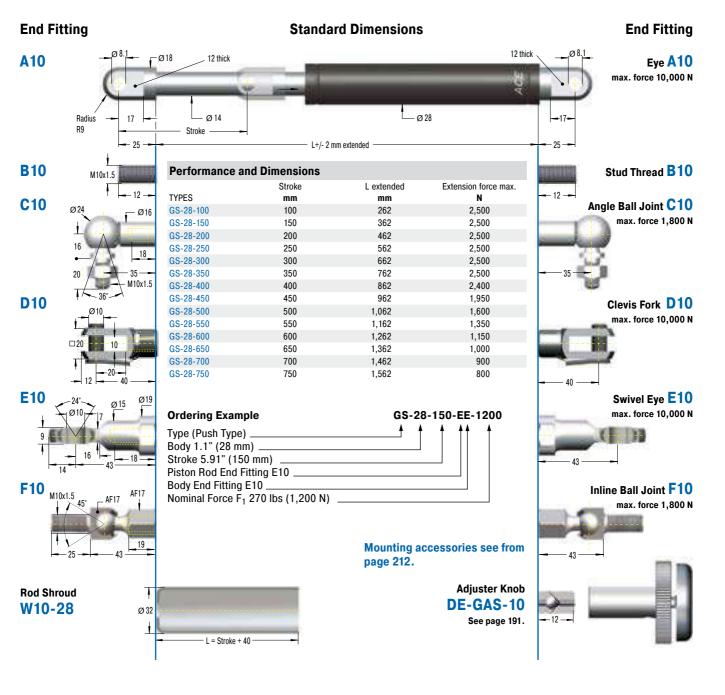
154

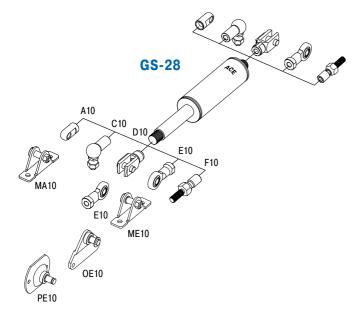


Valve Technology, Extension force 40 N to 400 N (compressed up to 560 N)



Valve Technology, Extension force 50 N to 700 N (compressed up to 560 N)




Valve Technology, Extension force 80 N to 1,300 N (compressed up to 1,820 N)

Valve Technology, Extension force 150 N to 2,500 N (compressed up to 4,400 N)

Technical Data

Extension force: 150 N to 2,500 N (compressed up to 4,400 N)

Progression: Approx. 63 % to 76 %

Operating temperature range: -20 °C to 80 °C

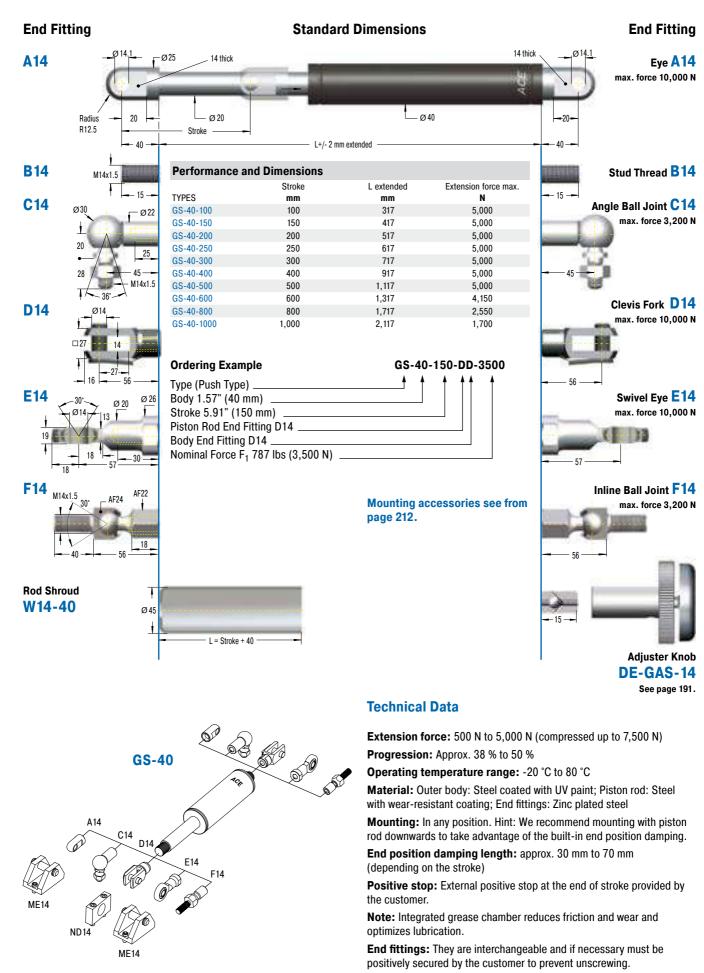
Material: Outer body: Steel coated with UV paint; Piston rod: Steel with wear-resistant coating; End fittings: Zinc plated steel

Mounting: In any position. Hint: We recommend mounting with piston rod downwards to take advantage of the built-in end position damping. **End position damping length:** approx. 30 mm to 70 mm

(depending on the stroke)

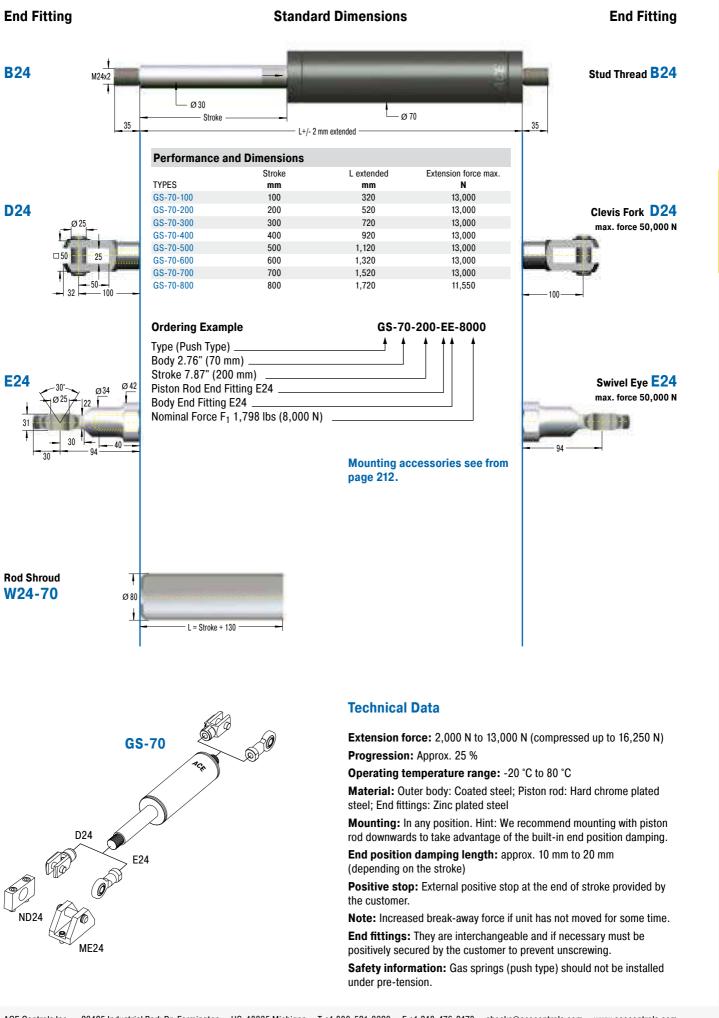
Positive stop: External positive stop at the end of stroke provided by the customer.

Note: Integrated grease chamber reduces friction and wear and optimizes lubrication.


End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

Safety information: Gas springs (push type) should not be installed under pre-tension.

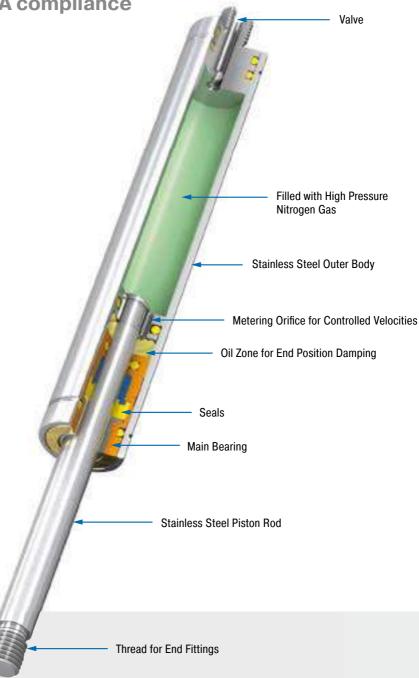
157



Valve Technology, Extension force 500 N to 5,000 N (compressed up to 7,500 N)

Valve Technology, Extension force 2,000 N to 13,000 N (compressed up to 16,250 N)

GS-8-V4A to GS-40-VA


With food grade oil for FDA compliance

Valve Technology, Stainless Steel Extension force 10 N to 5,000 N Stroke 20 mm to 700 mm

Protection against corrosion and superior visual appearance for even more sophisticated requirements: Based on ACE's industrial gas springs GS-8 to 40 made of steel, these models combine all advantages of stainless steel: they look great and are rust free. They are filled with food-grade oil as standard, which conforms to the requirements of FDA 21 CFR 178.3570.

These ACE gas springs not only look good, they are also available in various stroke lengths and extension forces. A comprehensive range of accessories in stainless steel guarantees easy assembly and a broad range of uses.

ACE stainless steel industrial gas springs are used in the automotive sector, in industrial applications, automation and machine building and medical clean room technology as well as in the food, electronics and shipbuilding industries.

Technical Data

Extension force: 10 N to 5,000 N Piston rod diameter: Ø 3 mm to Ø 20 mm

Progression: Approx. 13 % to 59 % (depending on size and stroke)

Lifetime: Approx. 10.000 m

Operating temperature range: -20 $^\circ\text{C}$ to 80 $^\circ\text{C}$

Material: Outer body, Piston rod, End fittings: Stainless steel (1.4301/1.4305, AISI 304/303 and 1.4404/1.4571, AISI 316L/316Ti)

Operating fluid: Nitrogen gas and HLP oil according to DIN 51524, part 2

Mounting: We recommend mounting with piston rod downwards to take advantage of the built-in end position damping.

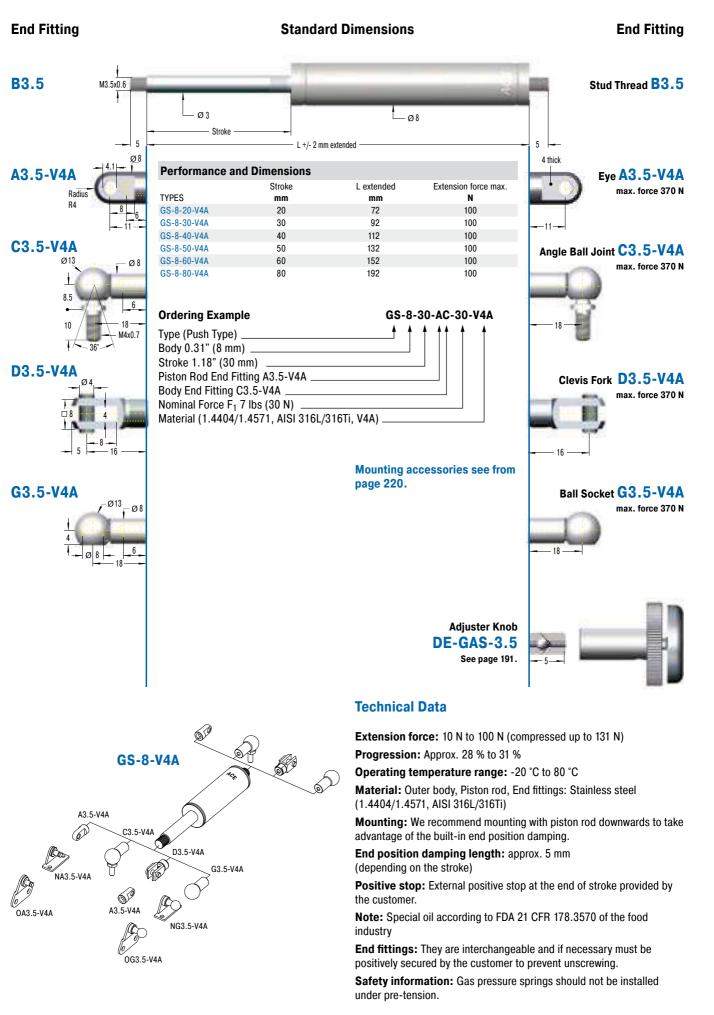
End position damping length: Approx. 5 mm to 30 mm (depending on the stroke)

Positive stop: External positive stop at the end of stroke provided by the customer.

Application field: Hoods, Shutters, Machine housing, Conveyor systems, Control boxes, Furniture industry, Shipbuilding, Food industry, Pharmaceutical industry, Folding elements

Note: Special oil according to FDA 21 CFR 178.3570 of the food industry

End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

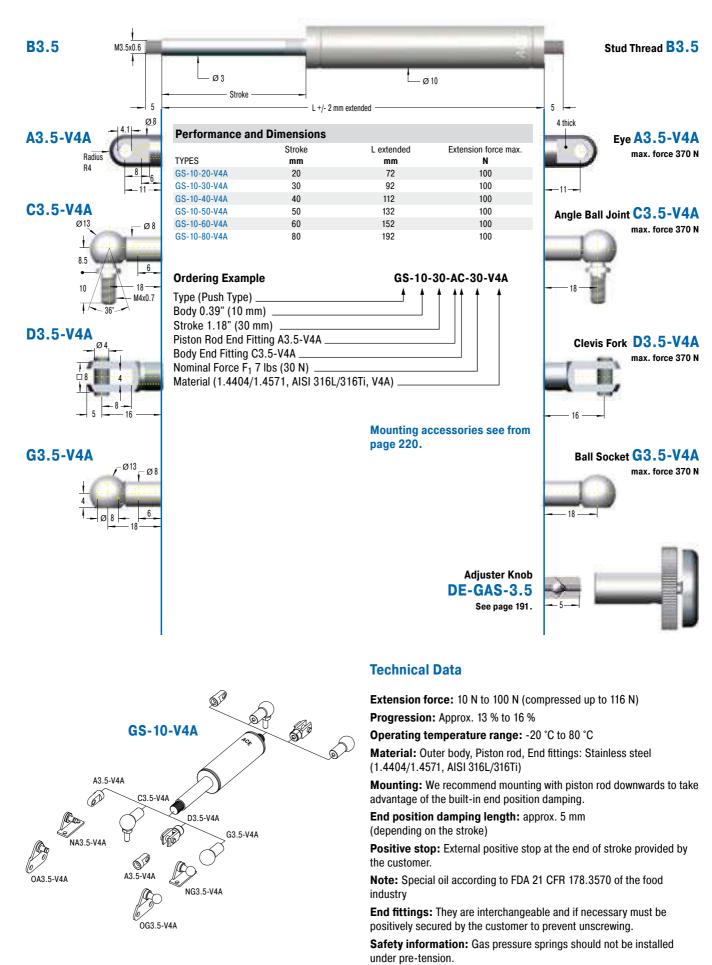

Safety information: Gas pressure springs should not be installed under pre-tension.

On request: Special oils and other special options. Alternative accessories. Different end position damping and extension speed. Other gas springs material 1.4404/1.4571, AISI 316L/316Ti (V4A) available on request.

160

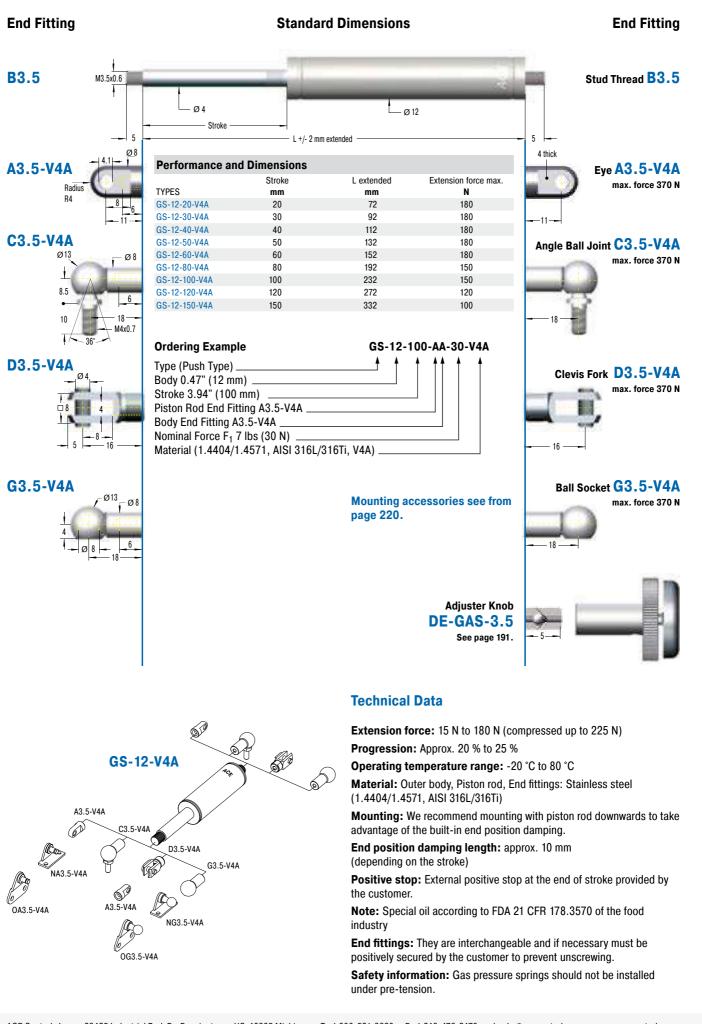
Valve Technology, Stainless Steel, Extension force 10 N to 100 N (compressed up to 131 N)

Industrial Gas Springs – Push Type GS-10-V4A



Valve Technology, Stainless Steel, Extension force 10 N to 100 N (compressed up to 116 N)

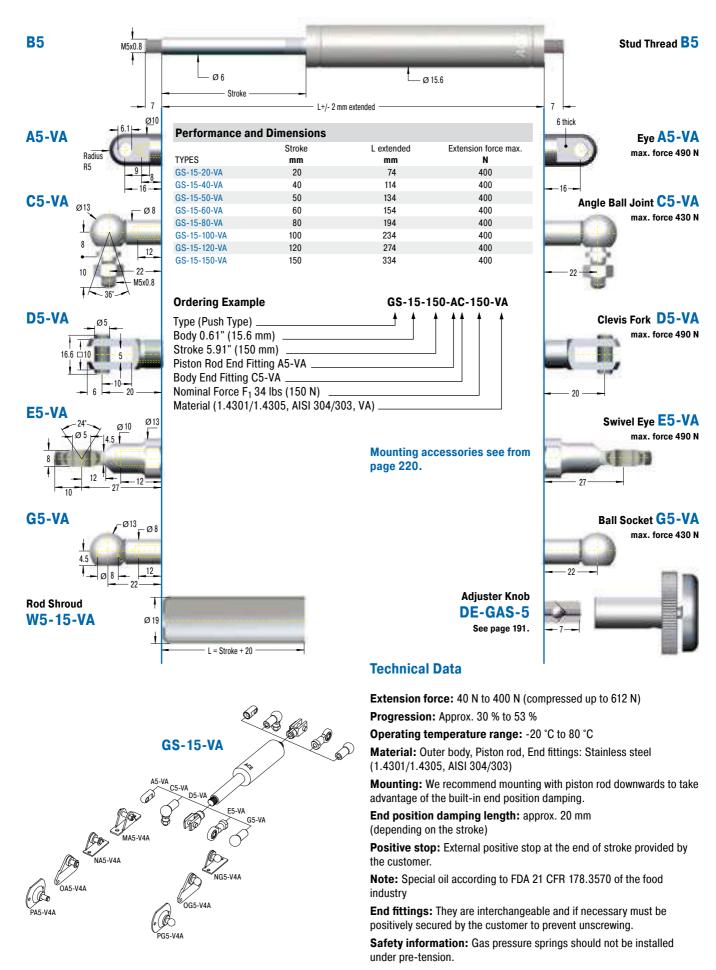
End Fitting


Standard Dimensions

End Fitting

Valve Technology, Stainless Steel, Extension force 15 N to 180 N (compressed up to 225 N)

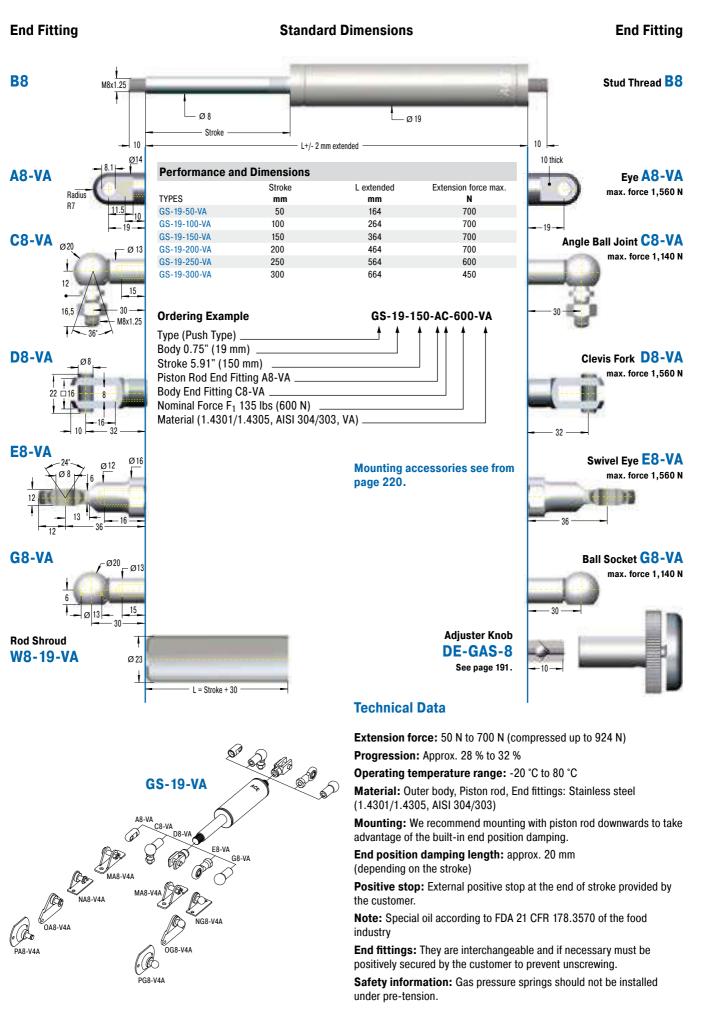
Industrial Gas Springs – Push Type GS-15-VA



Valve Technology, Stainless Steel, Extension force 40 N to 400 N (compressed up to 612 N)

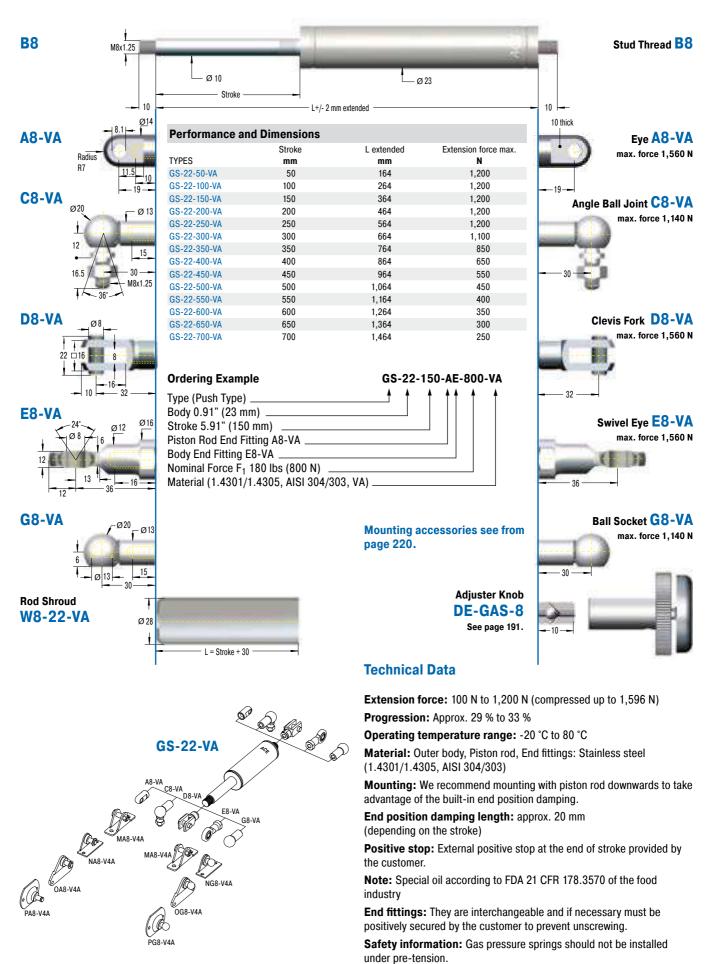
End Fitting

Standard Dimensions


End Fitting

165

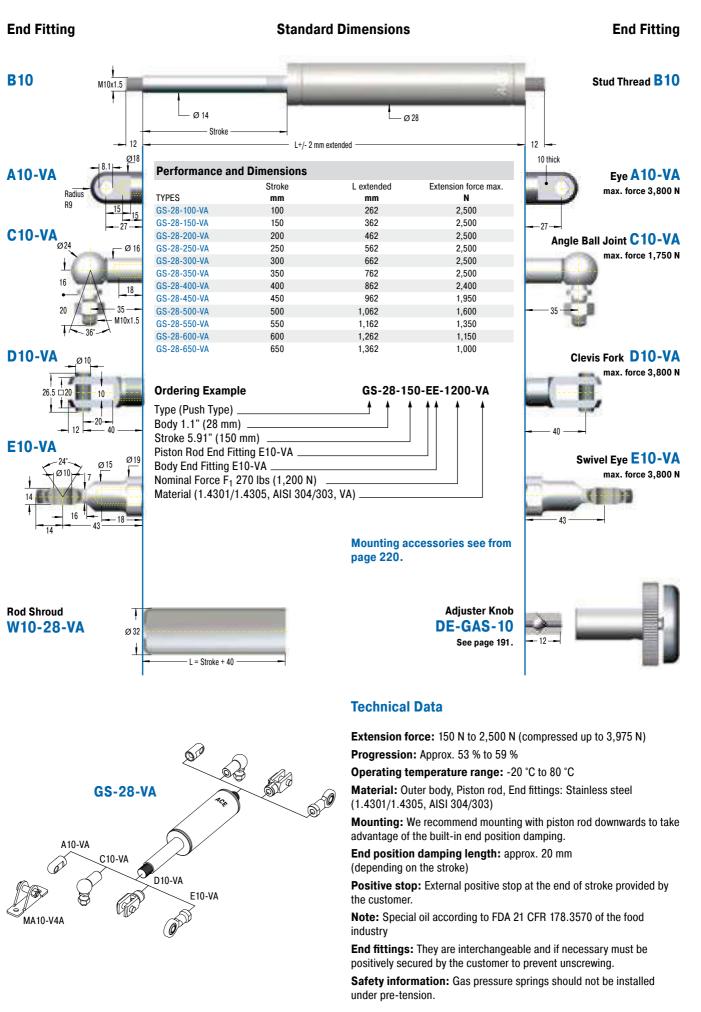
Valve Technology, Stainless Steel, Extension force 50 N to 700 N (compressed up to 924 N)



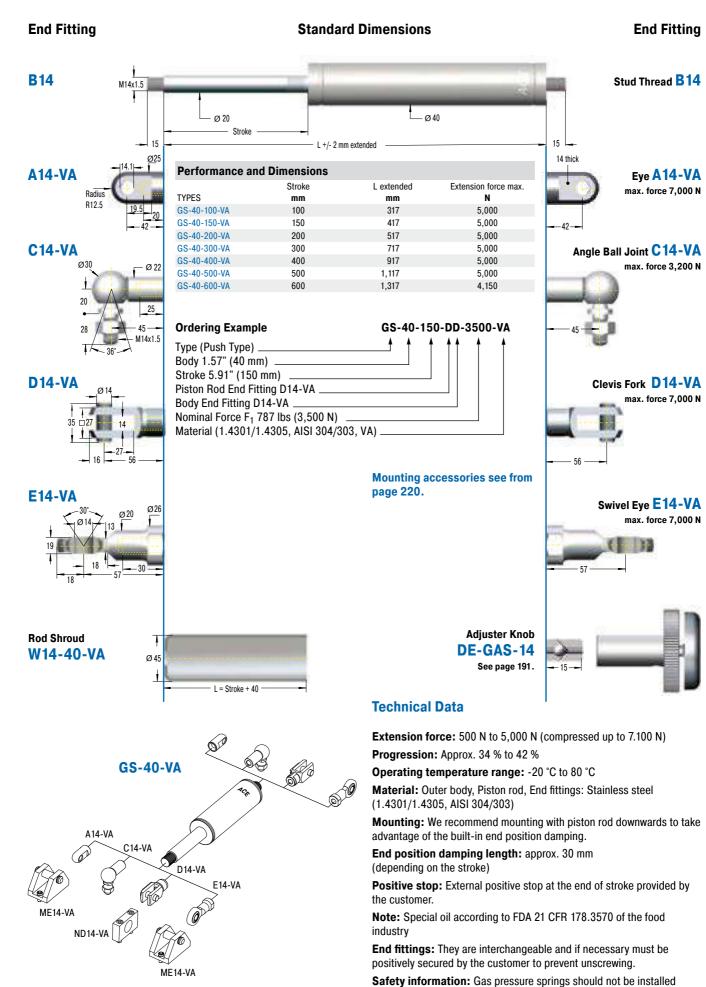
Valve Technology, Stainless Steel, Extension force 100 N to 1,200 N (compressed up to 1,596 N)

End Fitting

Standard Dimensions


End Fitting

167


Valve Technology, Stainless Steel, Extension force 150 N to 2,500 N (compressed up to 3,975 N)

Industrial Gas Springs – Push Type GS-40-VA

Valve Technology, Stainless Steel, Extension force 500 N to 5,000 N (compressed up to 7.100 N)

under pre-tension.

1	60
	00

Dimensions

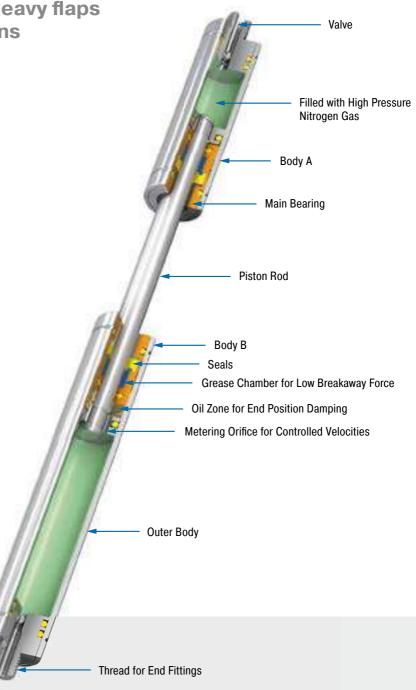
see Page

Stainless Steel Ga	is Springs (Push 1			Stainless Steel A	Accessories, V4
YPES	Stroke mm	L extended mm	Dimensions see Page	TYPES	
GS-15-20-V4A	20	74	164	A5-V4A	
GS-15-40-V4A	40	114	164	C5-V4A	
GS-15-50-V4A	50	134	164	D5-V4A	
GS-15-60-V4A	60	154	164	E5-V4A	
GS-15-80-V4A	80	194	164	G5-V4A	
GS-15-100-V4A	100	234	164	A8-V4A	
GS-15-120-V4A	120	274	164	C8-V4A	
GS-15-150-V4A	150	334	164	D8-V4A	
GS-19-50-V4A	50	164	165	E8-V4A	
GS-19-100-V4A	100	264	165	G8-V4A	
GS-19-150-V4A	150	364	165	A10-V4A	
GS-19-200-V4A	200	464	165	C10-V4A	
GS-19-250-V4A	250	564	165	D10-V4A	
GS-19-300-V4A	300	664	165	E10-V4A	
GS-22-50-V4A	50	164	166	A14-V4A	
GS-22-100-V4A	100	264	166	C14-V4A	
GS-22-150-V4A	150	364	166	D14-V4A	
S-22-200-V4A	200	464	166	E14-V4A	
S-22-250-V4A	250	564	166	211 1 10	
S-22-300-V4A	300	664	166		
S-22-350-V4A	350	764	166		
S-22-400-V4A	400	864	166		
S-22-450-V4A	450	964	166		
S-22-500-V4A	500	1,064	166		
S-22-550-V4A	550	1,164	166		
S-22-600-V4A	600	1,104	166		
S-22-650-V4A	650	1,364	166		
S-22-700-V4A	700	1,464	166		
S-28-100-V4A	100	262	167		
S-28-150-V4A	150	362	167		
S-28-200-V4A	200	462	167		
S-28-250-V4A	250	562	167		
S-28-300-V4A	300	662	167		
S-28-350-V4A	350	762	167		
S-28-400-V4A	400	862	167		
S-28-450-V4A	450	962	167		
S-28-500-V4A	500	1,062	167		
S-28-550-V4A	550	1,162	167		
GS-28-600-V4A	600	1,262	167		
GS-28-650-V4A	650	1,362	167		
GS-40-100-V4A	100	317	168		
GS-40-150-V4A	150	417	168		
S-40-200-V4A	200	517	168		
S-40-200-V4A	300	717	168		
S-40-300-V4A	400	917	168		
S-40-500-V4A	500	1,117	168		
	500	1,117	100		

d)
Specifications subject to change
Ĕ
~~~
5
<u> </u>
0
+
*
2
. <u>w</u>
ρ
õ
22
5
.0
÷
æ
ാ
÷
.2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
×
3
0,
1
ω
-
2
\sim
÷
2
Issue 04.2018 -
Ð
_ _
õ
ő

GST-40 Tandem

170


Optimized dual force for heavy flaps and wide angle applications

Valve Technology Extension force 300 N to 5,000 N Stroke 50 mm to 400 mm

Cover two differing force ranges: Tandem gas springs by ACE are maintenance-free and ready-to-install. Two pressure tubes deliver different extension forces and progression curves. With this type of gas spring you cover the different force ranges between the start and end of an application. ACE provides free specification support to deliver a gas spring that meets your specific application needs. We manufacture and adjusted precisely to the required dynamics of the application.

A comprehensive range of accessories guarantees easy assembly and a broad range of uses, are specifically suitable for heavy loads with large opening angle. Stainless steel versions are available to meet environmental or appearance requirements.

Tandem push type gas springs from ACE are used in industrial applications such as in automation and machine building, in the automobile, electronics and furniture industries, but also in medical technology as well as for service hatches.

Technical Data

Extension force: 300 N to 5,000 N Piston rod diameter: Ø 20 mm

Progression: According to calculation relating to your application.

Lifetime: Approx. 10,000 m

Operating temperature range: -20 °C to 80 °C

Material: Outer body, End fittings: Zinc plated steel; Piston rod: Steel with wear-resistant coating

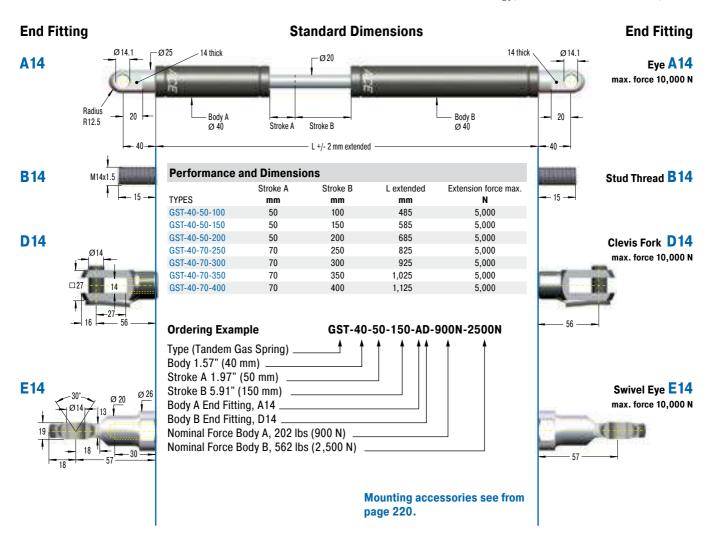
Operating fluid: Nitrogen gas and oil

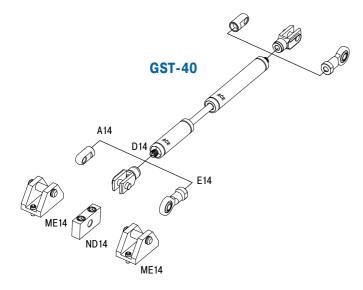
Mounting: In any position. Please adopt the mounting points determined by ACE.

End position damping length: Application-specific end position damping and extension speed.

Positive stop: External positive stop at the end of stroke provided by the customer.

Application field: Hoods, Shutters, Machine housing, Conveyor systems, Folding elements, Loading and lifting equipment


Note: These gas springs are tailored to the relevant application and are therefore not available ex stock.


End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

On request: Special oils and other special options. Alternative accessories. Material 1.4301/1.4305, AISI 304/303 (V2A) and 1.4404/1.4571, AISI 316L/316Ti (V4A).

Valve Technology, Extension force 300 N to 5,000 N

Technical Data

Extension force: 300 N to 5,000 N

Progression: According to calculation relating to your application. **Operating temperature range:** -20 °C to 80 °C

Material: Outer body, End fittings: Zinc plated steel; Piston rod: Steel with wear-resistant coating

Mounting: In any position. Please adopt the mounting points determined by ACE.

End position damping length: Application-specific end position damping and extension speed.

Positive stop: External positive stop at the end of stroke provided by the customer.

Note: These gas springs are tailored to the relevant application and are therefore not available ex stock.

End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

171

Issue 04.2018 - Specifications subject to change

Application Examples

GS-12

Safe opening and closing

ACE industrial gas springs (push type) protect samples in an incubator, which is used for chemical and biochemical applications. The plexiglass hood, under which may be found valuable laboratory goods, is securely held open by two maintenance-free, ready-to-install ACE industrial gas springs (push type) of the type GS-12-60-AA-X. With an end-position damping of 5 mm and an extension force of 10 to 180 N, they help to handle the forces generated. The hood is always easily opened and remains in this position. It also remains securely shut when the incubator is in operation.

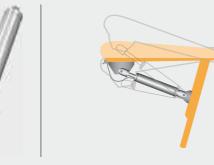
Very small ACE industrial gas springs (push type) enable careful opening and closing movements of a mini-incubator hood, under which may be found laboratory products


GFL Gesellschaft für Labortechnik mbH, 30938 Burgwedel, Germany

GS-19 Doors open and close safely

ACE industrial gas springs make opening and closing doors of rescue helicopters easier. The maintenance-free, sealed systems are installed in the access doors of helicopters of the type EC 135. There, they allow the crew to enter or exit the helicopter quickly, thus contributing to enhanced safety. The GS-19-300-CC gas springs provide a defined retraction speed and secure engagement of the door lock. The integrated end position damper allows gentle closing of the door and saves wear and tear on the valuable, lightweight material.

Industrial gas springs: For safe entry and exit


Appkication Examples

GS-22-VA

Made-to-measure stainless steel gas springs

A special hygiene and toilet chair, designed for children and young people with disabilities, must be firmly lockable in the sit and tilt positions. The practical aid thereby provided for relatives and carers can be attributed to two lockable ACE industrial gas springs (push type) which were especially developed and manufactured for this application and operate on the basis of the so-called tilt-in-space function. This allows the chair to be tilted forwards and backwards and provides significantly more convenience for users and patients. In order to meet all hygiene requirements, the gas springs are constructed in stainless steel.

With inclination angles of 15 degrees to the front and rear, the ACE stainless steel gas springs facilitate the work of nurses Rifton Equipment, Rifton, New York 12471, USA

GST-40 **Tandemly-operated large flaps securely** under control

Underground distribution systems are visually advantageous. To facilitate their servicing, the heavy covers of the often large supply systems are brought back to the surface with the help of ACE industrial tandem gas springs (push type). This is quite easily achieved thanks to the use of two pressure pipes, the result of which is two different force ranges. This means fitters must not endure laborious bending and a downward passage into the system of channels. In addition to these advantages, the springs benefit from their long service life and their capacity to be used, as stainless steel variants, in even the most hygienically-sensitive areas.

Langmatz GmbH, 82467 Garmisch-Partenkirchen, Germany

ACE industrial tandem gas springs (push type) enable easy maintenance of supply boxes by making the heavy flaps easier to operate

Industrial Gas Springs – Pull Type

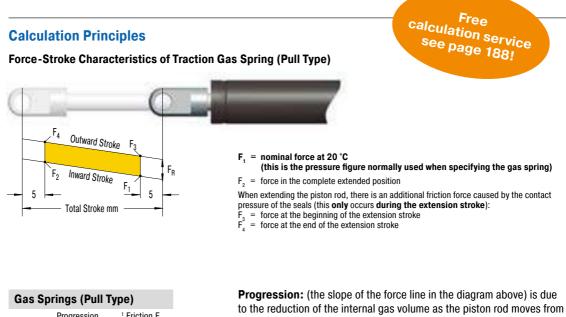
Alternatives for tight spaces and mounting requirements

If ACE gas push type springs cannot be used due to a lack of space, ACE's industrial gas pull type springs come into their own. These compact assistants with body diameters of 15 to 40 mm (0.59" to 1.57") are effective in the direction of traction and work in the opposite way to the principle of gas push type springs.

This means that the gas pressure in the cylinder draws the piston rod in and, when closing a flap for example, supports the manual force required for a controlled motion. ACE's gas pull type springs are also self-contained, maintenance-free machine elements and equipped with a standard valve to individually regulate the gas pressure, whereby they cover forces between 30 and 5,000 N (7 to 1125 lb). The ability to mount in any orientation and position along with an extensive range of DIN standardized accessories enable universal use.

Compact design

Individual filling valve technology Calculation program for specific design


Universally applicable

Function of a Gas Spring – Pull Type

Gas pull type springs work based on the reverse principle of a gas push type spring. They are also individually filled according to customer request to a certain pressure (extension force F₄). However, the piston rod here is pulled inwards by the gas pressure in the cylinder. The higher the pressure, the greater the traction force.

The piston ring surface between the piston rod and the inner tube is decisive for the function. When the piston rod pulls out, the nitrogen from the piston is compressed in the inner tube. The force increase (progression) of the gas spring is due to the rising pressure. The force increase is almost linear.

· · · · ·	3-1-	JI: - /
	Progression	¹ Friction F _B
TYPES	approx. %	approx. in N
GZ-15	12 - 22 ²	55 - 140
GZ-19	21 - 28 ²	20 - 40
GZ-28	28 - 30 ²	100 - 200
GZ-40	43 - 45 ²	
	on the filling fo	vroo

¹ Depending on the filling t ² Depending on the stroke

its initial position to its fully stroked position. The approx. progression values given above for standard springs can be altered on request.

Effect of termperature: The nominal F, figure is given at 20 °C. An increase of 10 °C will increase force by 3.4 %.

Filling tolerances: -20 N to +40 N or 5 % to 7 %. Depending on size and extension force the tolerances can differ.

Industrial Gas Springs – Pull Type

GZ-15 to GZ-40

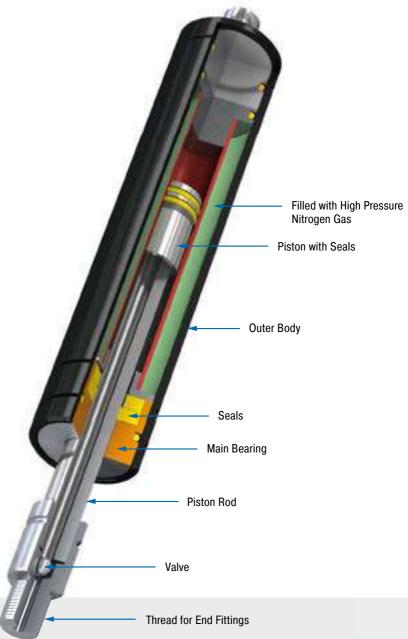
Valve Technology Very low progression rate Hoods, Shutters, Machine housing, Conveyor systems

GZ-15-V4A to GZ-40-VA

Valve Technology, Stainless Steel Very low progression rate with FDA approval Hoods, Shutters, Machine housing, Conveyor systems Page 176

Page 182

GZ-15 to GZ-40


Very low progression rate

Valve Technology Traction force 40 N to 5,000 N Stroke 20 mm to 650 mm

The solution to a lack of space: If standard push type gas springs cannot be used due to a lack of space, ACE's industrial pull type gas springs are the solution. They work in the opposite way of standard push type gas springs. The piston rod is retracted when the cylinder is unloaded. The gas pressure in the cylinder draws the piston rod in.

ACE pull type gas springs offer the maximum service life thanks to the solid chrome-plated piston rod and an integrated sliding bearing. The maintenance-free and ready-to-install products are available in body diameters of 15 mm to 40 mm (0.59" to 1.57") as well as forces from 40 N to 5,000 N (8.99 lbs to 1,124 lbs.) and are available from stock with valve and a large selection of accessories. The traction force can be fine-tuned using the adjustment valve.

Gas traction springs from ACE are used in industrial applications, especially in mechanical engineering and in medical technology as well as in the electronics and furniture industries.

Technical Data

Traction force: 40 N to 5,000 N Piston rod diameter: Ø 4 mm to Ø 28 mm Progression: Approx. 12 % to 45 %

Lifetime: Approx. 2,000 m

Operating temperature range: -20 °C to 80 °C

Material: Outer body, End fittings: Zinc plated steel; Piston rod: Steel or stainless steel with wear-resistant coating

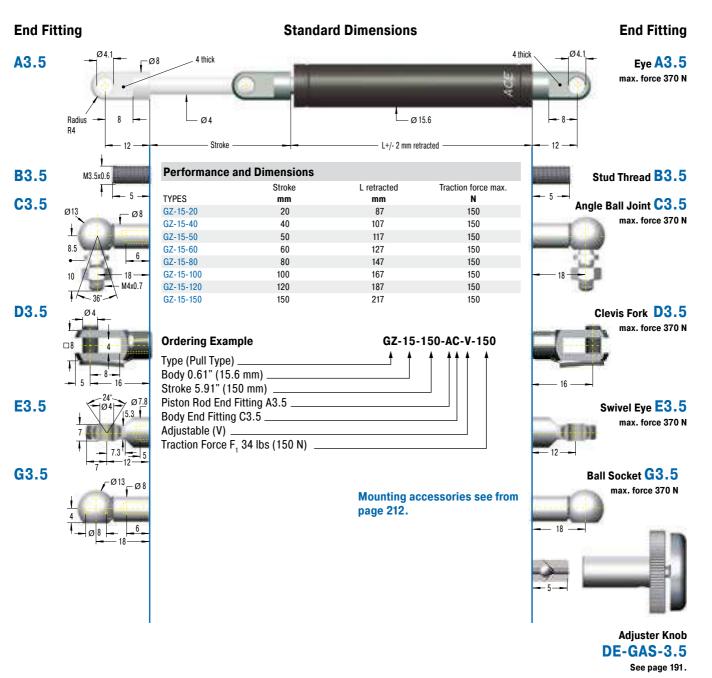
Operating fluid: Nitrogen gas

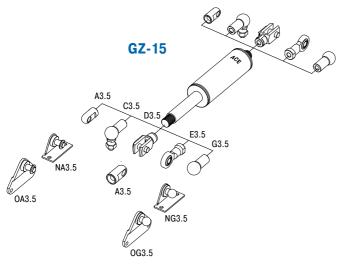
Mounting: With piston rod upwards.

End position damping length: Without damping. For end position damping use damping material (e.g. TUBUS or SLAB).

Positive stop: External positive stop at the end of stroke provided by the customer.

Application field: Hoods, Shutters, Machine housing, Conveyor systems, Control boxes, Furniture industry, Shipbuilding, Assembly stations, Vehicle technology, Folding elements


End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.


On request: Special oils and other special options. Alternative accessories. Traction gas springs with end position damping also available on request.

176

Valve Technology, Traction force 50 N to 150 N (extended up to 183 N)

Technical Data

Traction force: 50 N to 150 N (extended up to 183 N)

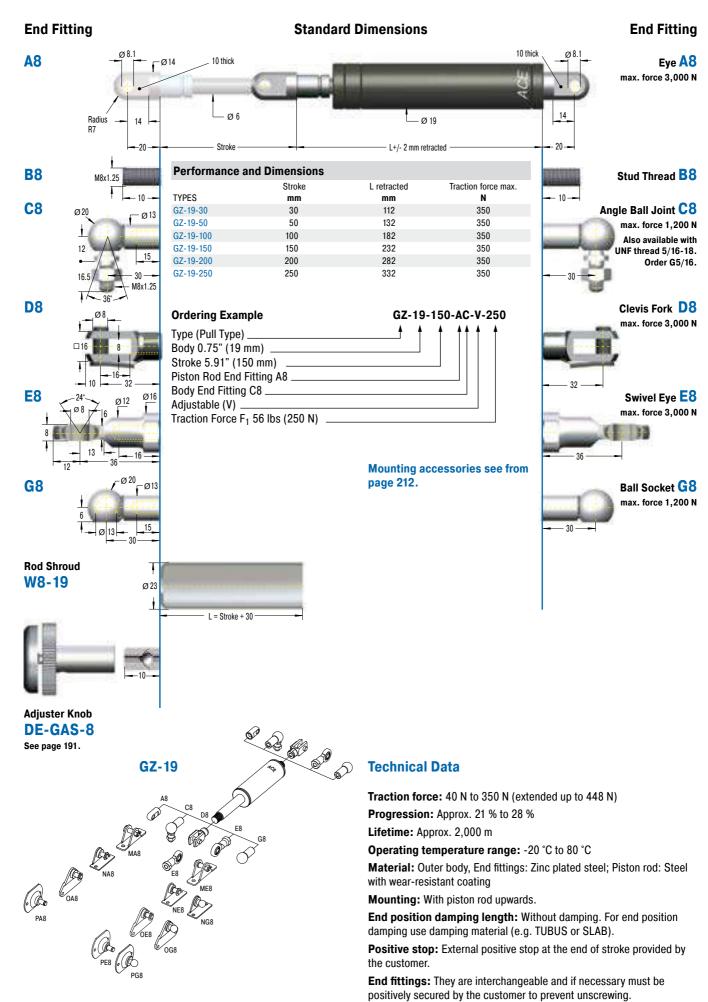
Progression: Approx. 12 % to 22 %

Lifetime: Approx. 2,000 m

Operating temperature range: -20 °C to 80 °C

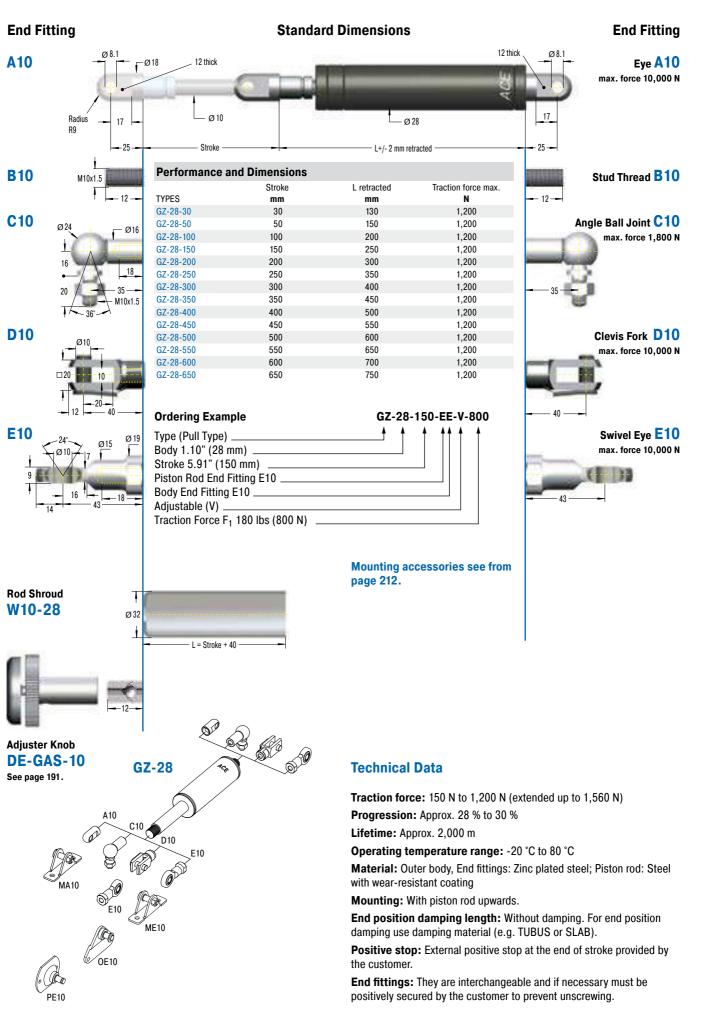
Material: Outer body, End fittings: Zinc plated steel; Piston rod: Stainless steel (1.4301/1.4305, AISI 304/303)

Mounting: With piston rod upwards.

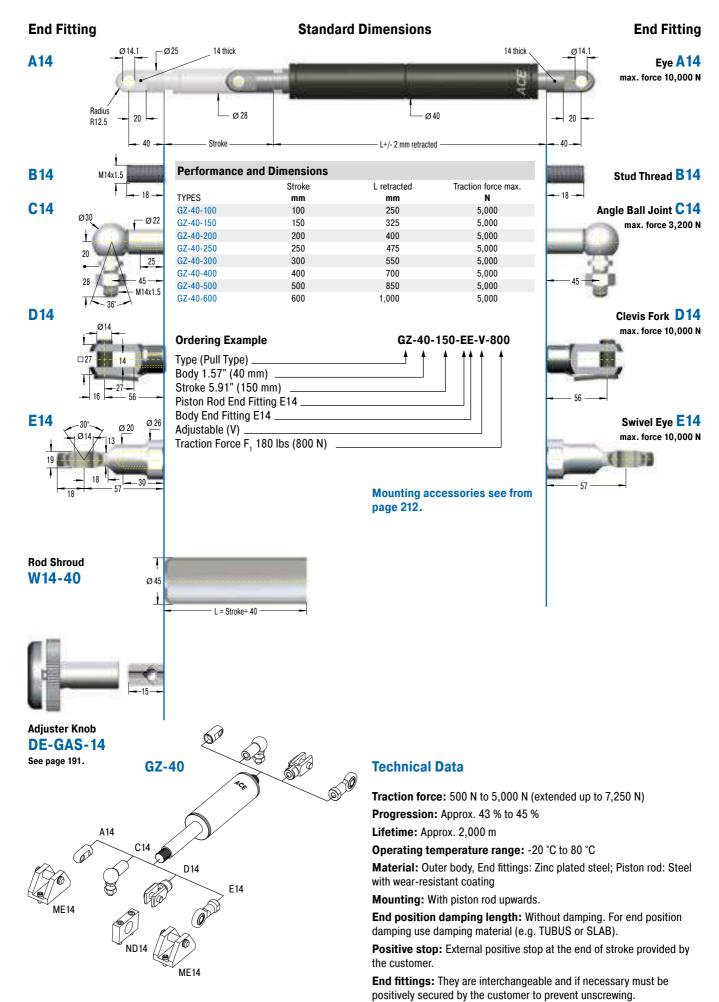

End position damping length: Without damping. For end position damping use damping material (e.g. TUBUS or SLAB).

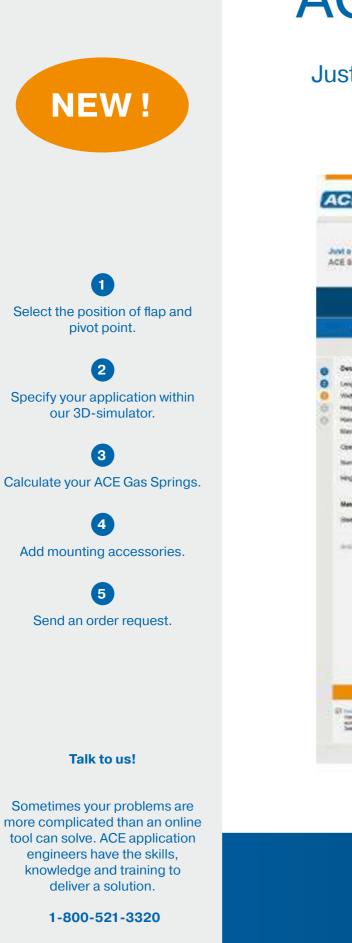
Positive stop: External positive stop at the end of stroke provided by the customer.

End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.



Valve Technology, Traction force 40 N to 350 N (extended up to 448 N)


Valve Technology, Traction force 150 N to 1,200 N (extended up to 1,560 N)



ssue 04.2018 - Specifications subject to change

Valve Technology, Traction force 500 N to 5,000 N (extended up to 7,250 N)

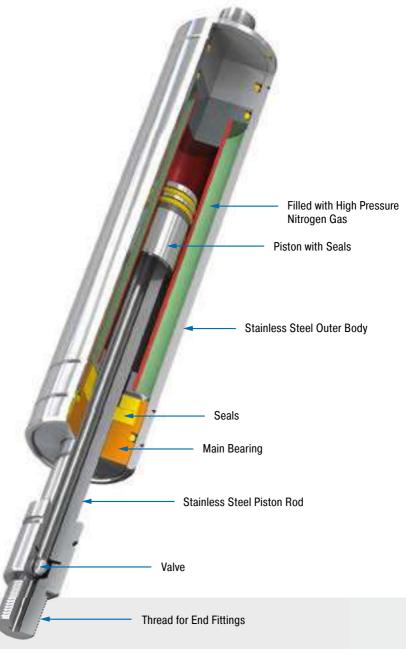
ACE Easy Sizing

Just a few simple steps to your perfect ACE Gas Spring

All available at www.acecontrols.com

Calculations

GZ-15-V4A to GZ-40-VA


Very low progression rate with FDA approval

Valve Technology, Stainless Steel Traction force 40 N to 5,000 N Stroke 20 mm to 600 mm

Brilliant performance when things become tight: For specific use in tough surroundings or small spaces, the broad spectrum of ACE stainless steel industrial pull type gas springs come in body diameters from 15 to 40 mm (0.59" to 1.57"). These units supplement the comprehensive program of the ACE industrial pull type gas springs with valves.

This high quality design is rust free and is more robust against environmental impact compared with standard gas pull type springs. These stainless steel gas springs are also visually appealing, very durable and available, upon request, in many stroke lengths and traction forces. A comprehensive range of accessories in stainless steel guarantees easy assembly and a broad range of uses.

ACE industrial push type springs made of stainless steel are used in industries such as the chemical and food industry, in automobiles, plant engineering and shipbuilding and also in medical, military, environmental and water supply technology.

Technical Data

Traction force: 40 N to 5,000 N Piston rod diameter: Ø 4 mm to Ø 28 mm Progression: Approx. 11 % to 45 %

Lifetime: Approx. 2,000 m

Operating temperature range: -20 $^\circ\text{C}$ to 80 $^\circ\text{C}$

Material: Outer body, Piston rod, End fittings: Stainless steel (1.4301/1.4305, AISI 304/303 and 1.4404/1.4571, AISI 316L/316Ti)

Operating fluid: Nitrogen gas

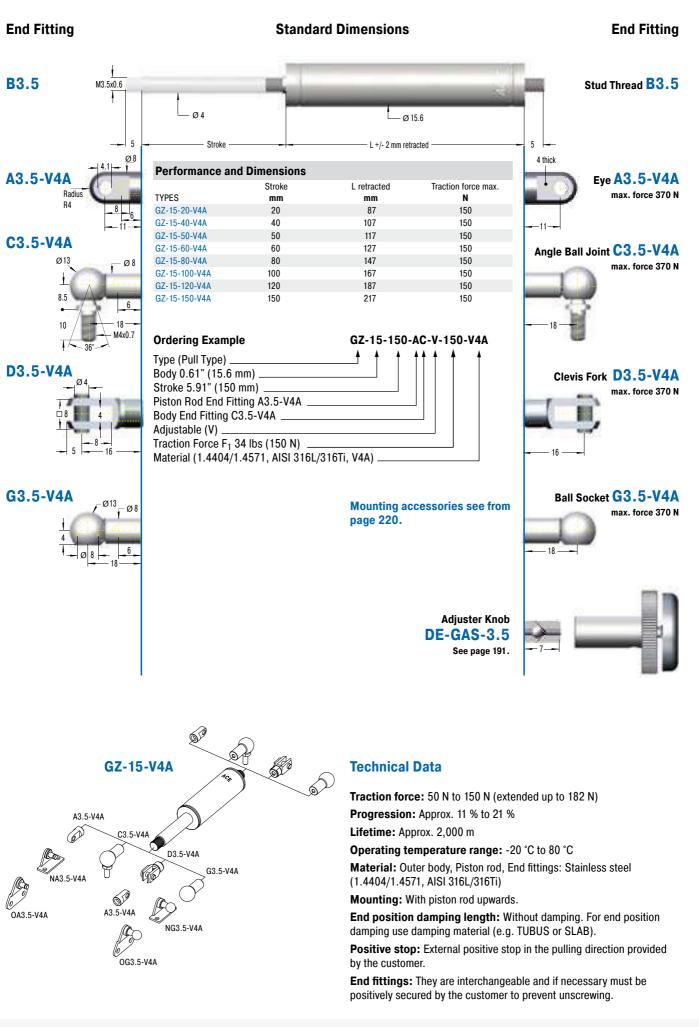
Mounting: With piston rod upwards.

End position damping length: Without damping. For end position damping use damping material (e.g. TUBUS or SLAB).

Positive stop: External positive stop in the pulling direction provided by the customer.

Application field: Hoods, Shutters, Machine housing, Conveyor systems, Control boxes, Furniture industry, Shipbuilding, Food industry, Pharmaceutical industry, Folding elements

End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

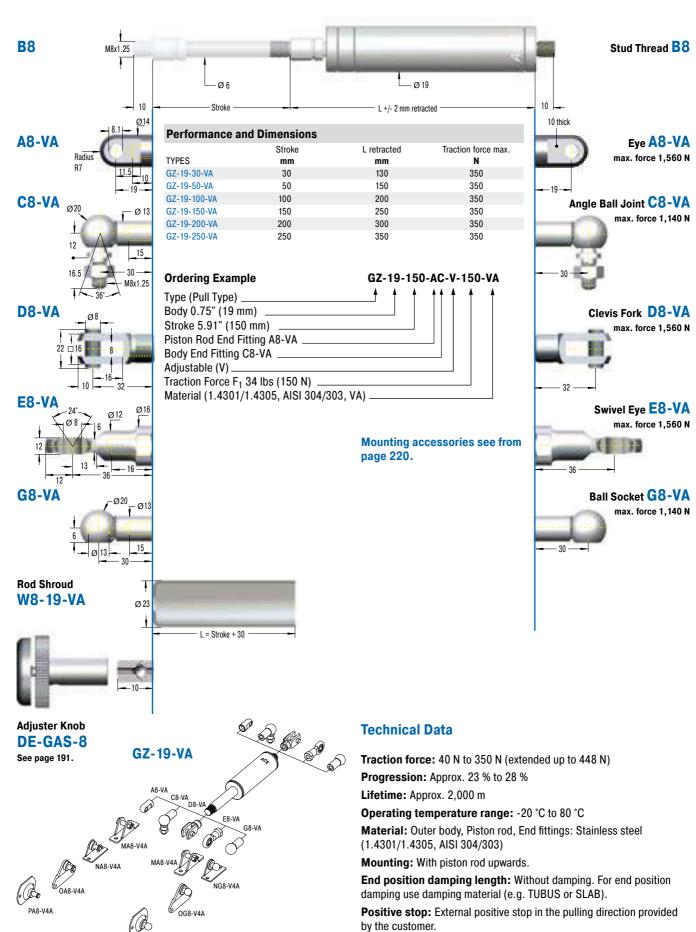

On request: Special oils and other special options. Alternative accessories. Traction gas springs with end position damping also available on request. Other traction gas springs material 1.4404/1.4571, AISI 316L/316Ti (V4A) available on request.

182

183

Valve Technology, Stainless Steel, Traction force 50 N to 150 N (extended up to 182 N)

Industrial Gas Springs – Pull Type GZ-19-VA



Valve Technology, Stainless Steel, Traction force 40 N to 350 N (extended up to 448 N)

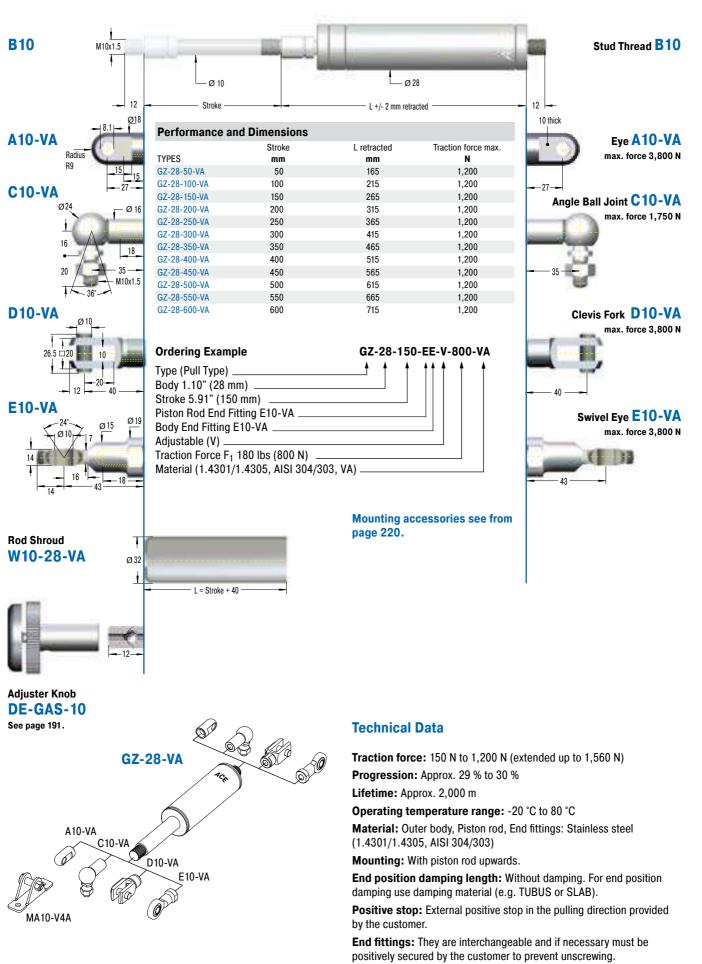
End Fitting

Standard Dimensions

End Fitting

End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

PG8-V4A

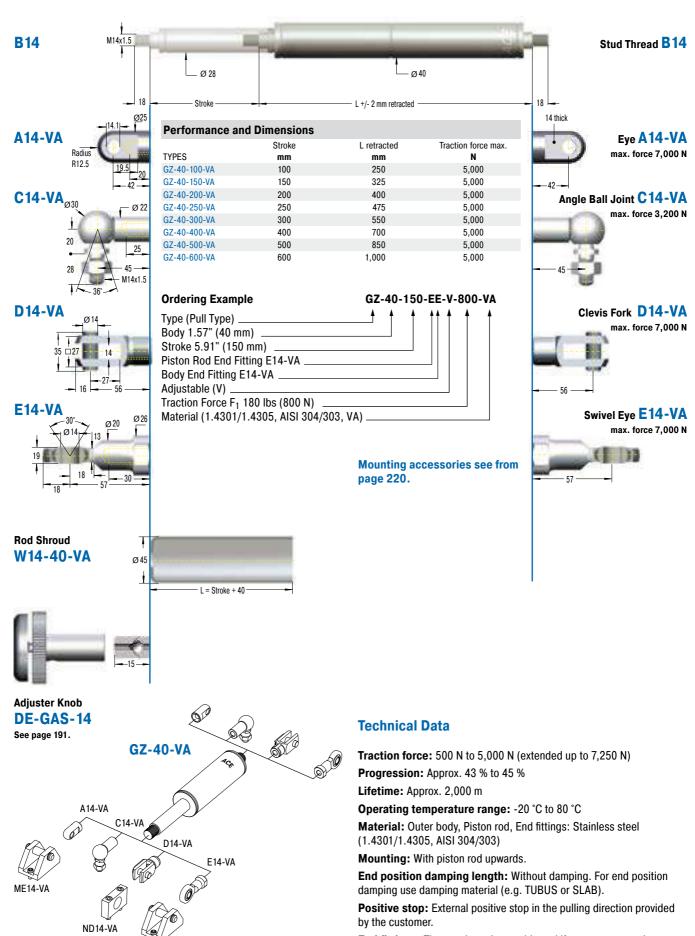


Valve Technology, Stainless Steel, Traction force 150 N to 1,200 N (extended up to 1,560 N)

Standard Dimensions

End Fitting

Industrial Gas Springs – Pull Type GZ-40-VA



Valve Technology, Stainless Steel, Traction force 500 N to 5,000 N (extended up to 7,250 N)

End Fitting

Standard Dimensions

End Fitting

End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

ME14-VA

187

Stainless Steel Gas Springs (Pull Type), V4A

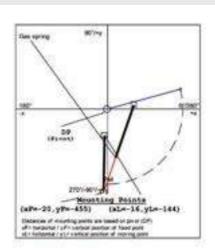
TYPES	Stroke mm	L retracted mm	Dimensions see Page
GZ-19-30-V4A	30	130	184
GZ-19-50-V4A	50	150	184
GZ-19-100-V4A	100	200	184
GZ-19-150-V4A	150	250	184
GZ-19-200-V4A	200	300	184
GZ-19-250-V4A	250	350	184
GZ-28-50-V4A	50	165	185
GZ-28-100-V4A	100	215	185
GZ-28-150-V4A	150	265	185
GZ-28-200-V4A	200	315	185
GZ-28-250-V4A	250	365	185
GZ-28-300-V4A	300	415	185
GZ-28-350-V4A	350	465	185
GZ-28-400-V4A	400	515	185
GZ-28-450-V4A	450	565	185
GZ-28-500-V4A	500	615	185
GZ-28-550-V4A	550	665	185
GZ-28-600-V4A	600	715	185
GZ-40-100-V4A	100	250	186
GZ-40-150-V4A	150	325	186
GZ-40-200-V4A	200	400	186
GZ-40-250-V4A	250	475	186
GZ-40-300-V4A	300	550	186
GZ-40-400-V4A	400	700	186
GZ-40-500-V4A	500	850	186
GZ-40-600-V4A	600	1,000	186

Stainless Steel Accessories, V4A Dimensions TYPES see Page A5-V4A 222 C5-V4A 222 D5-V4A 222 E5-V4A 222 G5-V4A 222 A8-V4A 223 C8-V4A 223 D8-V4A 223 E8-V4A 223 G8-V4A 224 A10-V4A 224 C10-V4A 224 D10-V4A 224 E10-V4A 224 A14-V4A 225 C14-V4A 225 D14-V4A 225 E14-V4A 225

We'll Size Industrial Gas Springs for You

And we'll provide all necessary information for installation

To obtain the optimum operation with minimal hand force, gas spring must be properly sized and the mounting points have to be optimally placed.

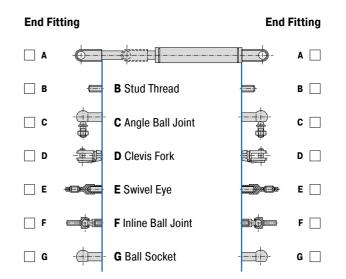

It is important to identify the following points:

- gas spring size
- required gas spring stroke
- mounting points on flap and frame
- extended length of the gas spring
- required extension force
- hand forces throughout the complete movement on the flap

With our free calculation service you can eliminate the time-consuming calculation and send us your details by fax or e-mail. Just complete the information shown on the following page. Please attach a sketch of your application (a simple hand sketch is sufficient) in side view. Our application engineers will determine the optimum gas springs and mounting points and calculate the ideal situation to satisfy your requirements. You will receive a quotation showing the opening and closing forces and our recommended mounting points to suit your application.

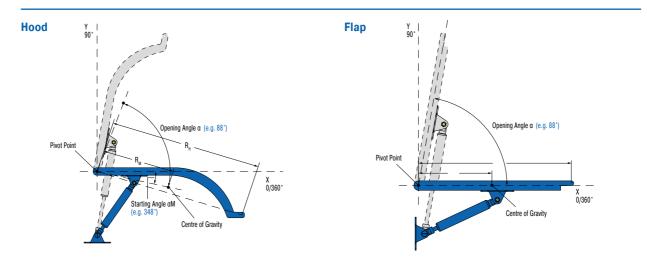
Example of a Calculation Offer

Input data	E.			Sdet	Ninc	atio	t d	ata	
Start and a		270		Terr	paral	-	1	24	14
Open anole		105		Peop	men.	din.	- 2	42	1
Ró, chiante	100-	410	÷	Sec.	ion .	100		- 34	-
Marin	S	12	100	-	No.		- 2	304	2
No gas sp	ting age	. 7	251	15		16		-	17
Redus Net	Morekie i	820	-						
	er hand for Antiand for An F2 IN			nings Phil	doein Lei	e Nom	(è)	e l	
	4-Hand long			ing'	dosin Let	e ign	(m)	e1	
	4-Hand long			ingt PN	dosin Let	e oph	100	-1	
	4-Hand long				dosin Let	e Spri	100	e]	
	4-Hand long				dosin Le	e ign	100	e]	
	4-Hand long				dosin Let	e Nger	1m	e]	
	4-Hand long			20201 M	dosin Lei	e ngen	100 (11 (23) (03) (13) (13)	e1	
	4-Hand long			1222244	dosin Let	e open	100 111 123 100 107	e1	


Calculation Service – Fax Form

Gas Springs

Input Data


Gas Spring Push type 🗌 Ga	as Spring Pull type 🗌						
Gas spring fixing points The fixed point of the frame and the are critical for the optimum operati							
Please attach a sketch of your application! (A few lines with dimensions are sufficient)							
Moving mass*	m kg						
Number of gas springs in parallel*	n pcs						
Number of movements*	/day						
Ambient temperature	°C T						
If not shown by the sketch:							
Radius of center of gravity	R _M mm						
Radius of hand force	R _H mm						
Starting angle	αM°						
Opening angle	α°						
* Compulsory information							

Desired Mounting Fittings

The end fittings are interchangeable

e.g. -CE: C = Angle Ball Joint, E = Swivel Eye

Please send us a sketch with dimensions of your application! Without this sketch we won't be able to calculate.

Comments	
Requirement per year	
Machine type / reference	

Sender

Company	Dept.
Address	Name
ZIP / City	Telephone
Website	E-Mail

Please complete and fax or email to: (248) 476-2470 or applications@acecontrols.com

Mounting and Safety Instructions

Filling

Gas springs are filled with pure nitrogen gas. Nitrogen is an inert gas that does not burn or explode and is not poisonous. The internal pressure of gas springs can be up to 300 bar (4,350 psi). Do not attempt to open or modify them!

Gas springs are maintenance-free!

ACE gas springs will operate in ambient temperatures from -20 °C to +80 °C.

We can equip our springs with special seals to withstand temperatures as low as -45 $^{\circ}$ C or as high as +200 $^{\circ}$ C. Gas springs should not be placed over heat or in open fire!

ACE gas springs can be stored in any position. Pressure lost through long storage is not to be expected. There are no known negative effects of long-term storage, but there may be a sticking effect the first time you compress a spring. This may require a higher initial force to operate the gas spring for the first time (initial breakaway force).

Mounting

Gas springs should be installed with the piston rod downwards. This position ensures best damping quality. ACE gas springs include an integrated grease chamber which allows for alternative mounting opportunities.

The tolerance for the installation length is generally deemed to be ± 2 mm. If very high demands are placed on durability and stability, please avoid the combination of small diameter + long stroke + high force.

The filling tolerance is -20 N to 40 N or 5 % to 7 %. Depending on size and extension force the tolerances can differ.

Life Time

Generally, ACE gas springs are tested to 70,000 to 100,000 complete strokes. This is equivalent to the seal lifetime (depending on model size) to a distance travelled of 10 km (lifetime of traction gas springs approx. 2 km). During these tests the gas spring must not lose more than 5 % of its pressure. Depending upon the application and operating environment, the service life of these gas springs may be much longer. In practice 500,000 strokes or more have been achieved on some applications.

Disposal/Recycling

Please ask for our disposal recommendations.

Warnings and Liability

All gas springs are marked with the part number, the production date and a warning sign "Do not open high pressure". We are not responsible for any damages of any kind that arises due to goods that are not marked accordingly.

Valve Actuation & Refilling Kit

Valve Actuation with ACE DE-GAS

Simple, safe and reliable

De-gassing for controlled force reduction on valve gas springs

The reduction is made by screwing the DE-Gas on the male screwed end of the gas spring. The drain process is possible through light actuation of the push button. If too much nitrogen is discharged, the gas spring can be refilled by ACE.

Adjustment

- 1. Hold gas spring valve up.
- 2. Insert DE-GAS adjuster knob on thread of the valve.
- Press the DE-GAS adjuster knob with light hand force until you can hear the nitrogen escaping. Press only briefly to avoid too much nitrogen being discharged.
- 4. After adjustment, remove the DE-GAS adjuster knob, mount the end fittings and test the gas spring in your application. If necessary repeat the procedure.

If you use 2 gas springs in parallel, both gas springs should have the same force to avoid bending forces or side load on the application. If necessary return to ACE to refill both gas springs to the same (average) force.

If too much nitrogen is discharged, the units can be returned to ACE for re-gassing.

You can also visit our Youtube channel at www.youtube.com/user/acecontrolsglobal Here, among other things you will find an ACETips video on the topic of DE-GAS!

Gas Spring Refilling Kit

Flexible and easy to use	Flexibl	e and	easy to	use
--------------------------	---------	-------	---------	-----

The ACE gas spring refilling kit offers you the opportunity to fill gas springs on location or adapt them individually. The refilling kit is equipped with all the parts you need to fill gas springs. Very precise filling of the gas springs is possible using the digital manometer. The table for determining the filling pressure of the gas springs is included with the case. The only thing missing from the delivery is the nitrogen.

The refilling kit contains all filling bells and adjuster knobs for the current ACE gas spring range.

Gas springs filled with the refilling kit must be measured on a calibrated measurement system by ACE for repeat production.

The refilling kit suits 200 bar nitrogen bottles with a thread of W24.32x1/14". Other connections are available upon request.

Part number: GS-FK-C

Hydraulic Dampers

Multi-talent in speed control

The hydraulic dampers are similar in appearance to the ACE industrial gas springs but are adjusted in the end position and work differently to the DVC family with individual speed adjusters for the push and pull direction. This provide users with the maximum flexibility.

Whether used as drive compensation or safety elements, the retraction and extension speed of these ACE solutions can always be precisely set. This means that the speed of movement can be controlled, synchronisation regulated in both directions and pivoting loads can be compensated. Depending on the model, the push and pull forces are between 30 N and 40,000 N. These maintenance-free, ready-to-install products are available in body diameters of 12 mm to 70 mm and in stroke lengths up to 800 mm.

ACE

Hydraulic Dampers

DVC-32 and DVC-2 to DVC-6

Adjustable, Without Free Travel **Multi-directional speed adjustment** Cylinder speed controls, Absorption control, Finishing and processing centres

HBD-15 to HBD-40

Adjustable **Motion Control at the highest level** Finishing and processing centres, Machine housing, Hoods, Shutters

HB-12 to HB-70

Adjustable Linear motion control Conveyor systems, Transport systems, Furniture industry, Locking systems Page 194

Page 196

Page 202

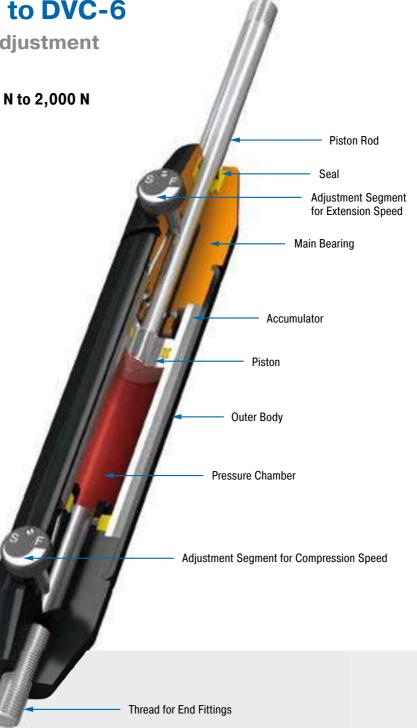
Constant speed rates

Sensitive adjustment

High quality and long lifetime

Easy to mount

DVC-32 and DVC-2 to DVC-6


Multi-directional speed adjustment

Adjustable, Without Free Travel Compression and extension force 42 N to 2,000 N Stroke 50 mm to 150 mm

Separately regulated in any stroke position: The hydraulic dampers of the product family DVC-32 and DVC-2 to DVC-6 are the first dampers to provide precise, independent, external adjustment of in-and-out speeds. With their individual adjustments for the push and pull direction as well as the bi-directional action, these are suitable as safety or control elements.

The great number of mounting accessories makes assembly of these ACE hydraulic dampers easier and allows these maintenance-free, ready-to-install and self-contained systems universally applicable. Qualitatively high grade, and at the same time simple to use; one of their uses is to absorb swinging loads.

These velocity controllers are used in the automotive sector, automation and machine building as well as in the electronics industry.

Technical Data

Compression and extension force: 42 N to 2,000 N

Outer body diameter: Ø 32 mm

Piston rod diameter: Ø 8 mm Lifetime: Approx. 10,000 m

Operating temperature range: 0 °C to 65 °C

Adjustment: Steplessly adjustable

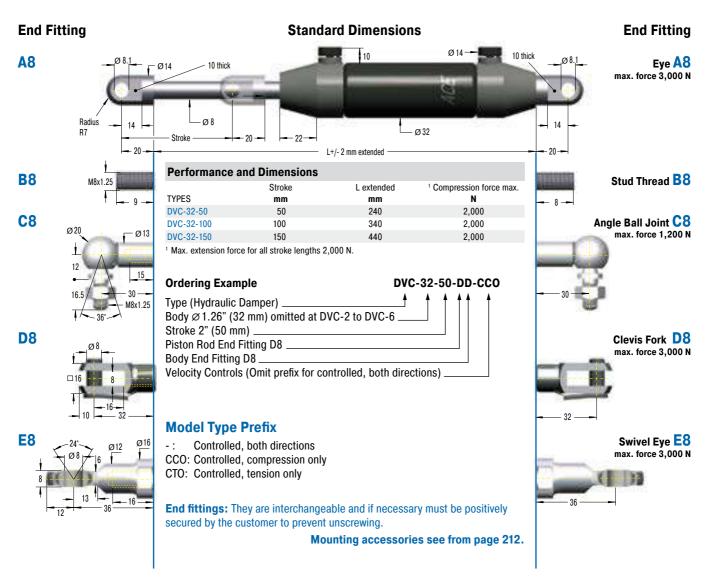
Positive stop: External positive stops 1 mm to 1.5 mm before the end of stroke provided by the customer.

Damping medium: Automatic Transmission Fluid (ATF)

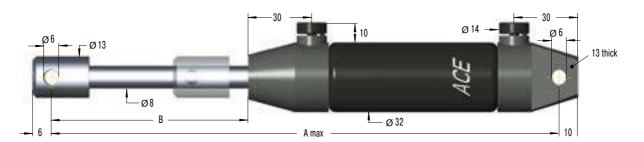
Material: Outer body: Coated aluminium; Piston rod: Hard chrome plated steel; End fittings: Zinc plated steel

Mounting: In any position

Application field: Cylinder speed controls, Absorption control, Finishing and processing centres


Note: Increased break-away force if unit has not moved for some time. Damping force can be adjusted after installation.

End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.


On request: Special oils and other special options. Alternative accessories available on request.

Adjustable, Without Free Travel, Compression and extension force 42 N to 2,000 N

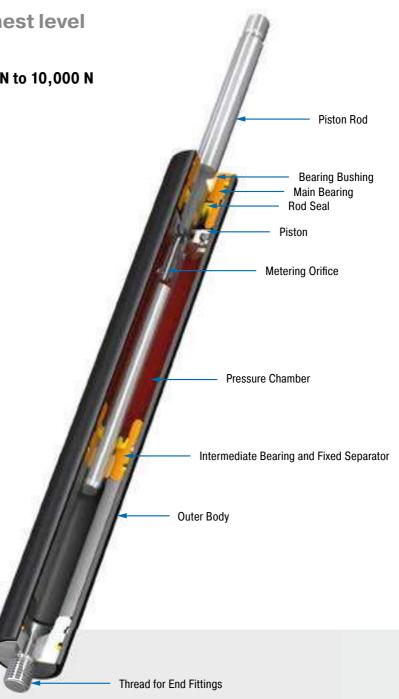
DVC-2 to DVC-6

Performance and Dimensions

· oriorinance and					
	Stroke	A max.	В	Compression force max.	Traction force max.
TYPES	mm	mm	mm	N	N
DVC-2	50	250	75.4	2,000	2,000
DVC-4	100	351	125	2,000	2,000
DVC-6	150	452	176	2,000	2,000

HBD-15 to HBD-40

Motion Control at the highest level


Adjustable

Compression and extension force 36 N to 10,000 N Stroke 25 mm to 800 mm

ACE Controls HBD hydraulic dampers are maintenance-free, self-contained and sealed units. They are available with body diameters from 15 mm (0.59") to 40 mm (1.57") and with stroke lengths of up to 800 mm (31.5"). Unlike standard hydraulic dampers that include free travel up to 20 % of stroke, these dependable units have no free travel and are ideal for applications that require this level of performance. Double-acting hydraulic dampers are standard. However, a single acting design is available. Adjustment is easily achieved by pulling and turning the rod until the desired damping speed is achieved. The travel speed is adjustable and remains constant throughout the stroke.

The single acting version is controllable in one direction only, with free-flow in the opposite direction. A built-in antilock guard allows adjustment to be made at any damping rate without unit lock up. These reliable units offer long life-cycle performance. A variety of end fittings are available for ease of operation and installation, and are included.

HBD hydraulic dampers are use for process control, machine guards, lids, hatches, fire safety doors, arms for medical equipment, conveyors, swinging loads, machine tools, lift gates, drill feed control, amusement park rides, and more.

Technical Data

Compression and extension force: 36 N to 10,000 N

Outer body diameter: Ø 15 mm to Ø 40 mm Piston rod diameter: Ø 6 mm to Ø 14 mm

Lifetime: Approx. 10,000 m

Free travel: These units have no free travel and are ideal for applications that require this level of performance.

Operating temperature range: -20 $^\circ\text{C}$ to 80 $^\circ\text{C}$

Adjustment: Pull the piston rod out to its fully extended position. While pulling on the rod, turn it clockwise or counter-clockwise until the desired damping is achieved. The adjustment is multi-turn and correct damping may require several trial and error adjustments. A built-in antilock guard allows adjustments to be made at any damping rate without unit lock up.

Positive stop: External positive stops 1mm to 1.5 mm before the end of stroke provided by the customer.

Damping medium: Petroleum oil

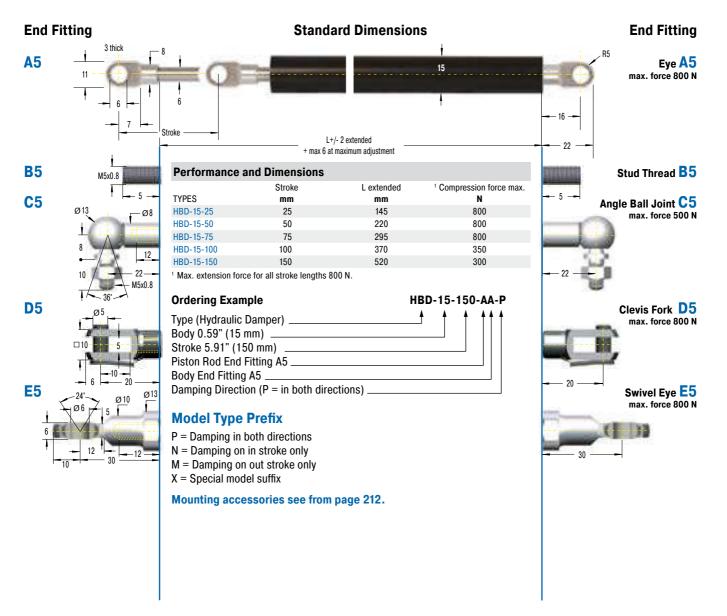
Material: Outer body: Black anodized aluminium; Piston rod: Hard chrome plated steel; End fittings: Zinc plated steel

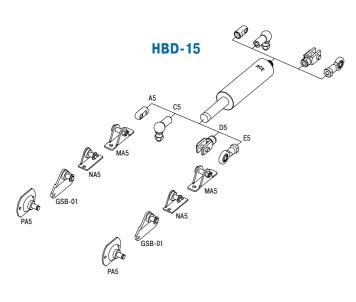
Mounting: In any position

Application field: Finishing and processing centers, Machine housing, Hoods, Shutters,

Fire safety doors, Medical technology, Conveyor systems, Swivel units, Tool machines, Lift doors

Note: Increased break-away force if unit has not moved for some time.


End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.


Safety information: Mechanical Stop required 1 mm to 1.5 mm before end of stroke.

On request: Special oils, damping characteristics, and stroke lengths. Alternative accessories available on request.

Adjustable, Compression and extension force 36 N to 800 N

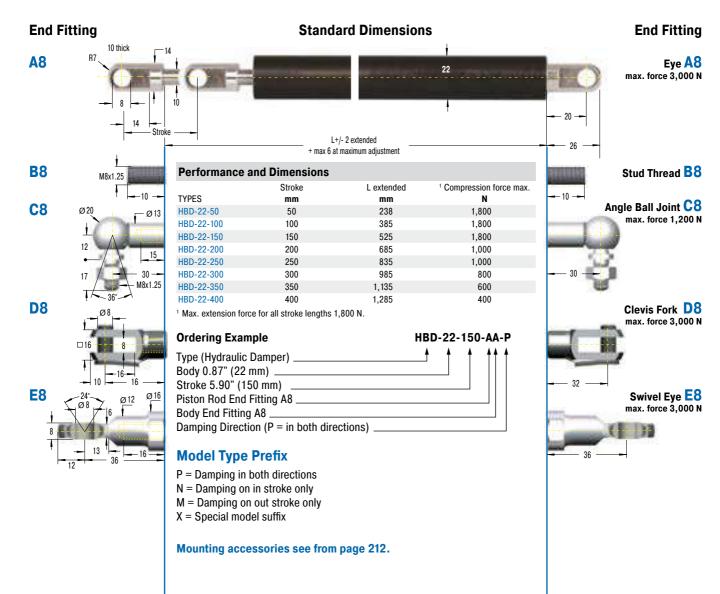
Technical Data

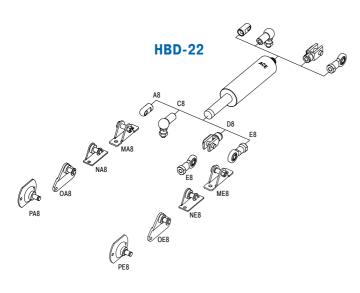
Compression and extension force: 36 N to 800 N

Free travel: These units have no free travel and are ideal for applications that require this level of performance.

Operating temperature range: -20 °C to 80 °C

Adjustment: Pull the piston rod out to its fully extended position. While pulling on the rod, turn it clockwise or counter-clockwise until the desired damping is achieved. The adjustment is multi-turn and correct damping may require several trial and error adjustments. A built-in antilock guard allows adjustments to be made at any damping rate without unit lock up.


Material: Outer body: Black anodized aluminium; Piston rod: Hard chrome plated steel; End fittings: Zinc plated steel


Mounting: In any position

End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

Adjustable, Compression and extension force 50 N to 1,800 N

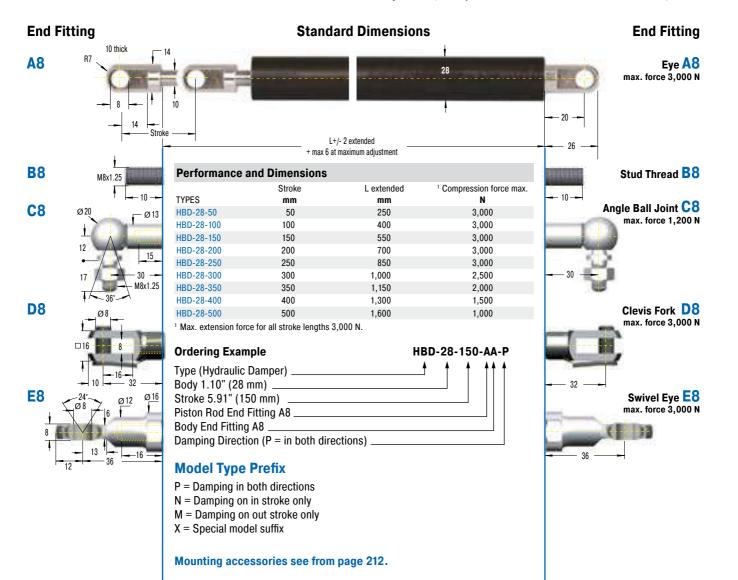
Technical Data

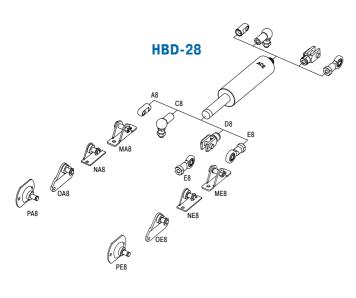
Compression and extension force: 50 N to 1,800 N

Free travel: These units have no free travel and are ideal for applications that require this level of performance.

Operating temperature range: -20 °C to 80 °C

Adjustment: Pull the piston rod out to its fully extended position. While pulling on the rod, turn it clockwise or counter-clockwise until the desired damping is achieved. The adjustment is multi-turn and correct damping may require several trial and error adjustments. A built-in antilock guard allows adjustments to be made at any damping rate without unit lock up.


Material: Outer body: Black anodized aluminium; Piston rod: Hard chrome plated steel; End fittings: Zinc plated steel


Mounting: In any position

End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

Adjustable, Compression and extension force 70 N to 3,000 N

Technical Data

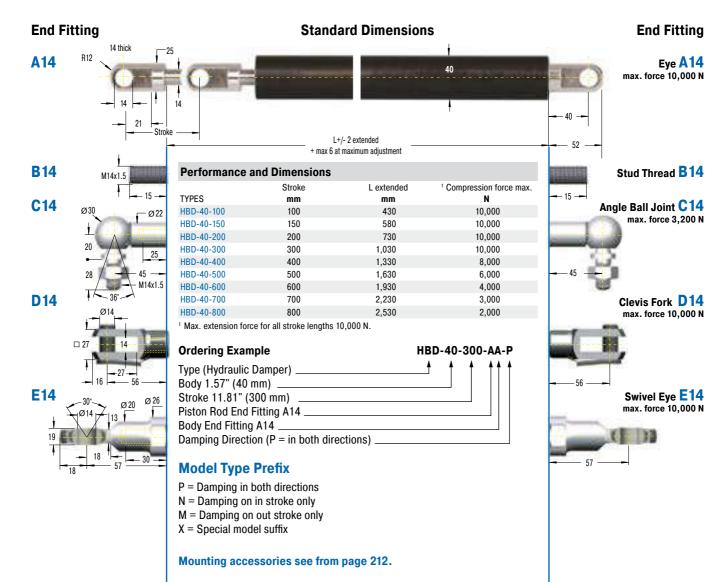
Compression and extension force: 70 N to 3,000 N

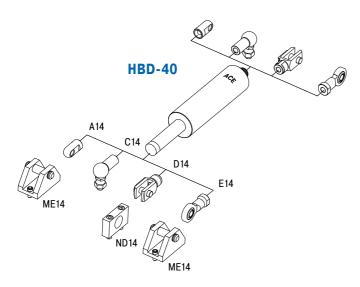
Free travel: These units have no free travel and are ideal for applications that require this level of performance.

Operating temperature range: -4 °F to 176 °F

Adjustment: Pull the piston rod out to its fully extended position. While pulling on the rod, turn it clockwise or counter-clockwise until the desired damping is achieved. The adjustment is multi-turn and correct damping may require several trial and error adjustments. A built-in antilock guard allows adjustments to be made at any damping rate without unit lock up.

Material: Outer body: Black anodized aluminium; Piston rod: Hard chrome plated steel; End fittings: Zinc plated steel


Mounting: In any position


End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

200

Adjustable, Compression and extension force 80 N to 10,000 N

Technical Data

Compression and extension force: 80 N to 10,000 N

Free travel: These units have no free travel and are ideal for applications that require this level of performance.

Operating temperature range: -20 °C to 80 °C

Adjustment: Pull the piston rod out to its fully extended position. While pulling on the rod, turn it clockwise or counter-clockwise until the desired damping is achieved. The adjustment is multi-turn and correct damping may require several trial and error adjustments. A built-in antilock guard allows adjustments to be made at any damping rate without unit lock up.

Material: Outer body: Black anodized aluminium; Piston rod: Hard chrome plated steel; End fittings: Zinc plated steel

Mounting: In any position

End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

Dream it We. Love. Challenges.

Ok, pure gold or fur-covered are not realistic options. But if you need a perfect solution for your individual needs, ACE has the tools and expertise to make it happen.

Call our experts +1 800-521-3220 or go to www.acecontrols.com

HB-12 to HB-70

Linear motion control

Adjustable

Compression and extension force 20 N to 50,000 N Stroke 10 mm to 800 mm

High quality and long service life: The hydraulic dampers of the product family HB can also be used as single or double acting brake. Its coated body and piston rods with wear-resistant surface treatment are features of high quality and long service life.

The maintenance free, ready-to-install and closed systems provide a constant feed rate and are adjustable. The control segment on the piston makes adjustment at the end position child's play. Thanks to a broad selection of end fittings the assembly is easy to mount, so that the damper can be universally deployed for damping swinging masses, such as in power or free conveyors.

On automotive, automation and machine building, medical technology or the electronics and furniture industry, these machine elements are found in a number of different areas.

Technical Data

Compression and extension force: 20 N to 50,000 N

Outer body diameter: \emptyset 12 mm to \emptyset 70 mm Piston rod diameter: \emptyset 4 mm to \emptyset 30 mm

Lifetime: Approx. 10,000 m

Free travel: Construction of the damper results in a free travel of approx. 20 % of stroke.

Separator piston: Available as a special option without free travel achieved by separator piston and nitrogen accumulator.

Operating temperature range: -20 $^\circ\text{C}$ to 80 $^\circ\text{C}$

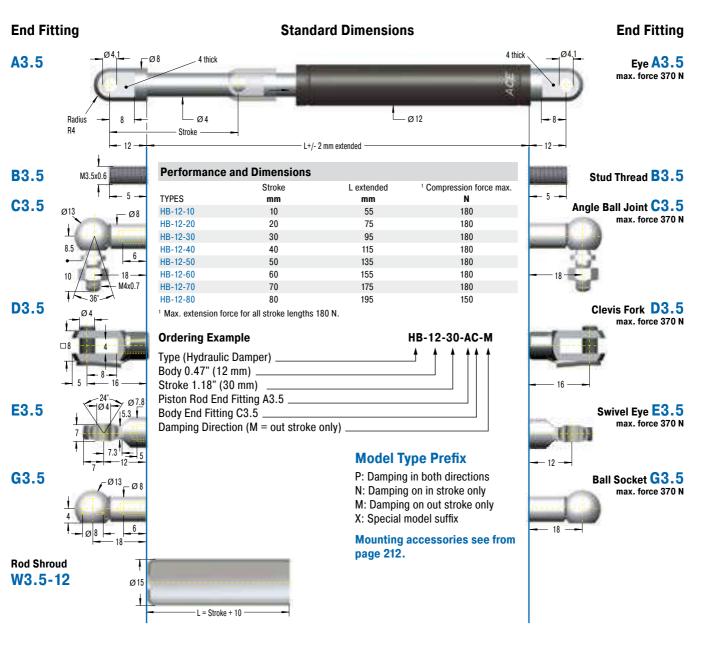
Adjustment: Achieved by turning the piston rod in its fully extended or fully compressed position.

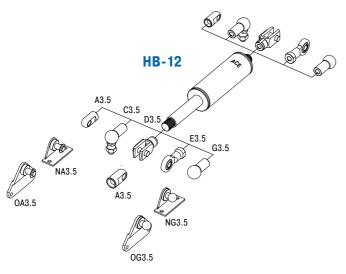
Positive stop: External positive stops 1 mm to 6 mm before the end of stroke provided by the customer.

Damping medium: Hydraulic oil

Material: Outer body: Coated steel; Piston rod: Steel or stainless steel with wear-resistant coating; End fittings: Zinc plated steel

Mounting: In any position


Application field: Conveyor systems, Transport systems, Furniture industry, Locking systems, Sports equipment **Note:** Increased break-away force if unit has not moved for some time.


End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

On request: Special oils and other special options. Alternative accessories available on request.

Adjustable, Compression and extension force 20 N to 180 N

Technical Data

Compression and extension force: 20 N to 180 N

Free travel: Construction of the damper results in a free travel of approx. 21 % of stroke.

Separator piston: Available as a special option without free travel achieved by separator piston and nitrogen accumulator.

Operating temperature range: -20 °C to 80 °C

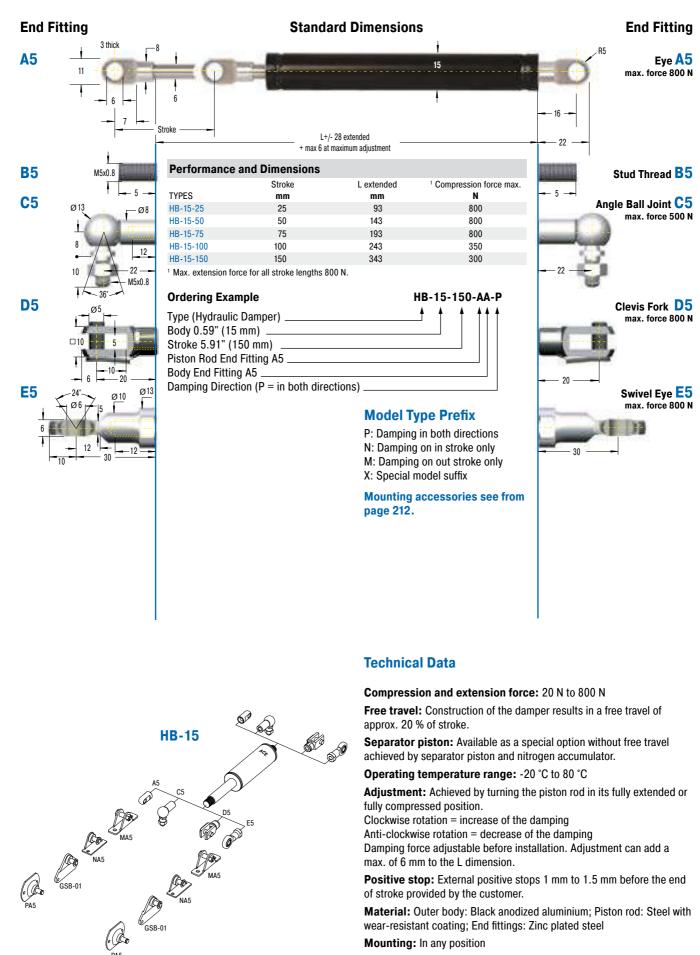
Adjustment: Achieved by turning the piston rod in its fully extended or fully compressed position.

Clockwise rotation = increase of the damping

Anti-clockwise rotation = decrease of the damping

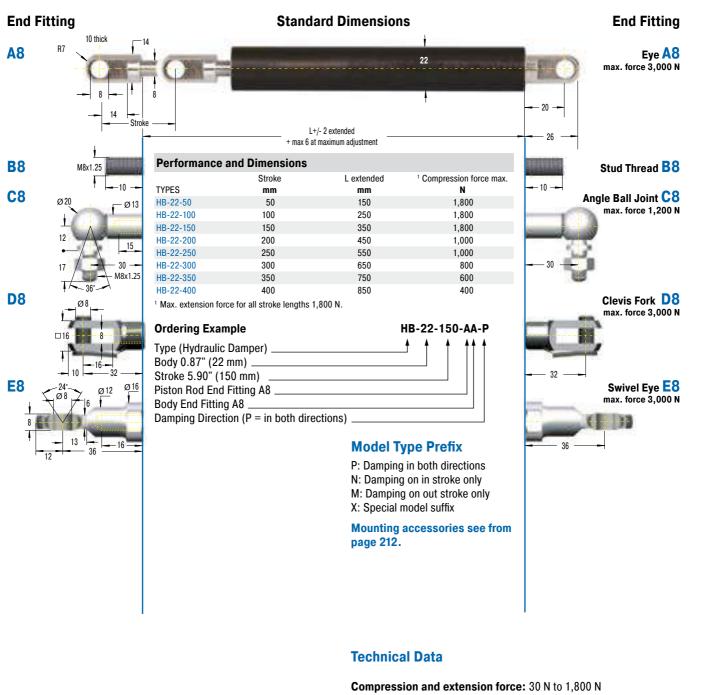
Damping force adjustable before installation. Adjustment can add a max. of 6 mm to the L dimension.

Positive stop: External positive stops 1 mm to 1.5 mm before the end of stroke provided by the customer.


Material: Outer body: Coated steel; Piston rod: Stainless steel (1.4301/1.4305, AISI 304/303); End fittings: Zinc plated steel

Mounting: In any position

Note: Increased break-away force if unit has not moved for some time.


Adjustable, Compression and extension force 20 N to 800 N

Hydraulic Dampers HB-22

Adjustable, Compression and extension force 30 N to 1,800 N

Free travel: Construction of the damper results in a free travel of approx. 20 % of stroke.

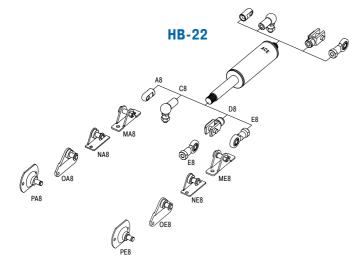
Separator piston: Available as a special option without free travel achieved by separator piston and nitrogen accumulator.

Operating temperature range: -20 °C to 80 °C

Adjustment: Achieved by turning the piston rod in its fully extended or fully compressed position.

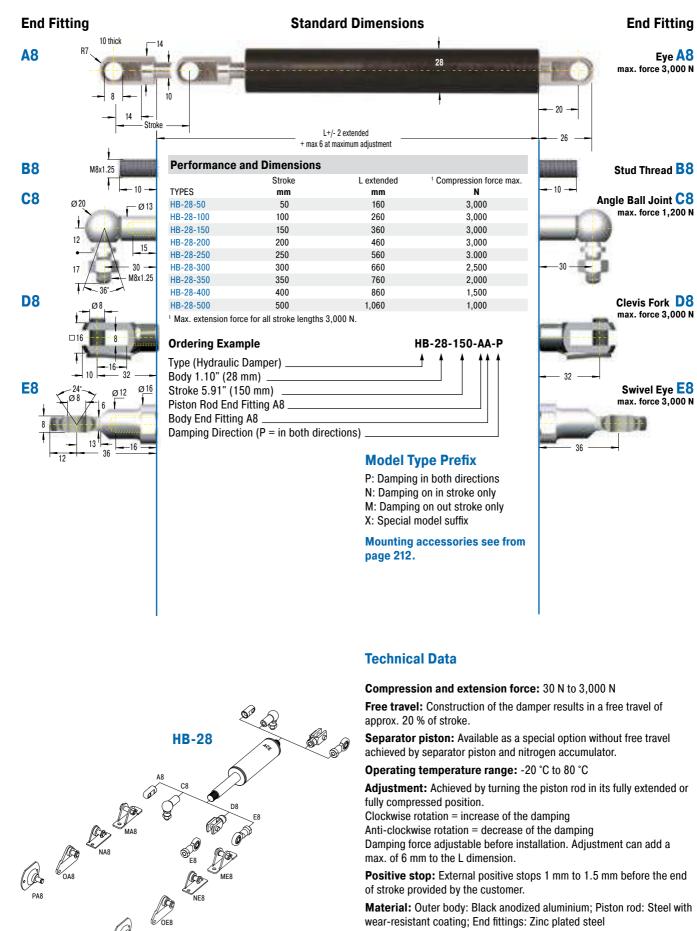
Clockwise rotation = increase of the damping

Anti-clockwise rotation = decrease of the damping


Damping force adjustable before installation. Adjustment can add a max. of 6 mm to the L dimension.

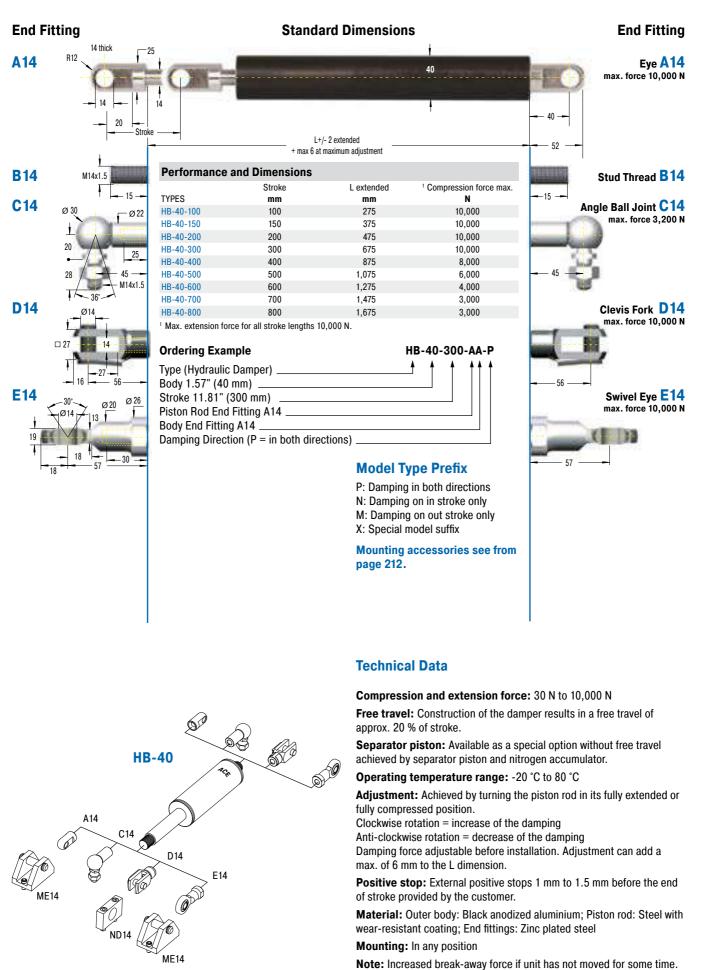
Positive stop: External positive stops 1 mm to 1.5 mm before the end of stroke provided by the customer.

Material: Outer body: Black anodized aluminium; Piston rod: Steel with wear-resistant coating; End fittings: Zinc plated steel


Mounting: In any position

Note: Increased break-away force if unit has not moved for some time.

Adjustable, Compression and extension force 30 N to 3,000 N



Note: Increased break-away force if unit has not moved for some time.

Hydraulic Dampers HB-40

Adjustable, Compression and extension force 30 N to 10,000 N

M24x2

35

Adjustable, Compression and extension force 2,000 N to 50,000 N

Ø 30

TYPES

HB-70-100

HB-70-200

HB-70-300

HB-70-400

HB-70-500

HB-70-600

HB-70-700

HB-70-800

Ordering Example

Type (Hydraulic Damper) Body 2.76" (70 mm) Stroke 11.81" (300 mm)

Piston Rod End Fitting E24

Body End Fitting E24

Stroke

Performance and Dimensions

Stroke

mm

111

211

311

411

511

611

711

811

¹ Max. extension force for all stroke lengths 50,000 N.

Damping Direction (N = in stroke only)

End Fitting

B24

D24

E24

Standard Dimensions

L+/- 2 mm extended + max 5 mm for adjustment setting

L extended

mm

331

531

731

931

1,131

1.331

1,531

1,731

. Ø 70

¹ Compression force max.

Ν

50,000

50,000

50,000

30,300

21,600

16.200

12,600

10,100

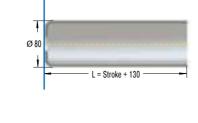
HB-70-300-EE-N

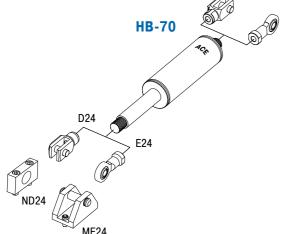
End Fitting

Stud Thread B24

Clevis Fork D24

max. force 50,000 N


35



Swivel Eye E24 max. force 50,000 N

Rod Shroud W24-70

Technical Data

page 212.

Model Type Prefix P: Damping in both directions N: Damping on in stroke only M: Damping on out stroke only X: Special model suffix

Mounting accessories see from

Compression and extension force: 2,000 N to 50,000 N

Free travel: Construction of the damper results in a free travel of approx. 20 % of stroke.

Separator piston: Available as a special option without free travel achieved by separator piston and nitrogen accumulator.

Operating temperature range: -20 °C to 80 °C

Adjustment: Achieved by turning the piston rod in its fully extended or

Clockwise rotation = increase of the damping

Anti-clockwise rotation = decrease of the damping

Damping force adjustable before installation. The adjustment can add a max. of 5 mm to the L dimension.

Positive stop: External positive stops 5 mm to 6 mm before the end of stroke provided by the customer.

Material: Outer body: Coated steel; Piston rod: Hard chrome plated steel; End fittings: Zinc plated steel

Mounting: In any position

Note: Increased break-away force if unit has not moved for some time.

End fittings: They are interchangeable and if necessary must be positively secured by the customer to prevent unscrewing.

fully compressed position.

ACE Controls Inc. + 23425 Industrial Park Dr. Farmington + US-48335 Michigan + T +1 800-521-3320 + F +1 248-476-2470 + shocks@acecontrols.com + www.acecontrols.com

ACE Digital Tools

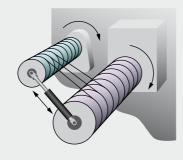
For more information about the calculation service see page 188!

Print catalog? Everyone can. ACE offers more:

- Downloads: Product information in many languages
- PC calculation software & online calculation service
- Extensive CAD component libraries
- ACE-YouTube channel with video tips
- VibroChecker free award-winning iPhone App

All available at www.acecontrols.com

Application Examples


DVC-32 **Precise unreeling**

Hydraulic dampers bring the sled movement of this textile machine to a gentle stop. At the turning point of 130 kg reeling spools, a sled should move up and down smoothly without causing a collision at the end of stroke position. The solution was provided by the hydraulic damper DVC-32-100. A self-contained sealed unit, ready to install and maintenance-free these units are ideal for precise control of speeds in both directions of travel. The travel speed is maintained throughout the entire stroke and can be independently adjusted in each direction of travel. Thanks to their compact design and wide choice of mounting accessories, these dampers could be easily integrated into this machine.

Textile machine unreels threads even better

HB-15 **Operating speed of flaps top-regulated**

In the past, operators of used-clothes containers could sustain injury because the flaps closed relatively quickly and uncontrollably. Various hydraulic dampers of the type HB-15, which are designed specifically for the type of container, regulate the synchronization of the flap in both directions and thereby serve to regulate the operating speed. To accommodate a range of requirements and to provide optimal protection against theft, different types with different strokes are mounted on flaps without damping, on large flaps with damping and on rotor flaps with damping.

Hydraulic dampers prevent fingers becoming trapped in used-clothes containers as they ensure more gentle opening and closing movements MCB Milieu & Techniek BV, 4704 SE Roosendaal, Netherlands

Application Examples

HB-40 Swinging movements cushioned by hydraulic dampers

Passengers always feel the swinging movement involved when cable cars arrive at the ski station. Maintenance-free hydraulic dampers type HB-40-300-EE-X-P cushion these movements perfectly. Designers of the cable cars, connected by means of an articulated joint via a four-point frame and connection guide to the suspension rod, profit from the ability of the adjustable dampers to absorb compressive forces of up to 10,000 N on either side.

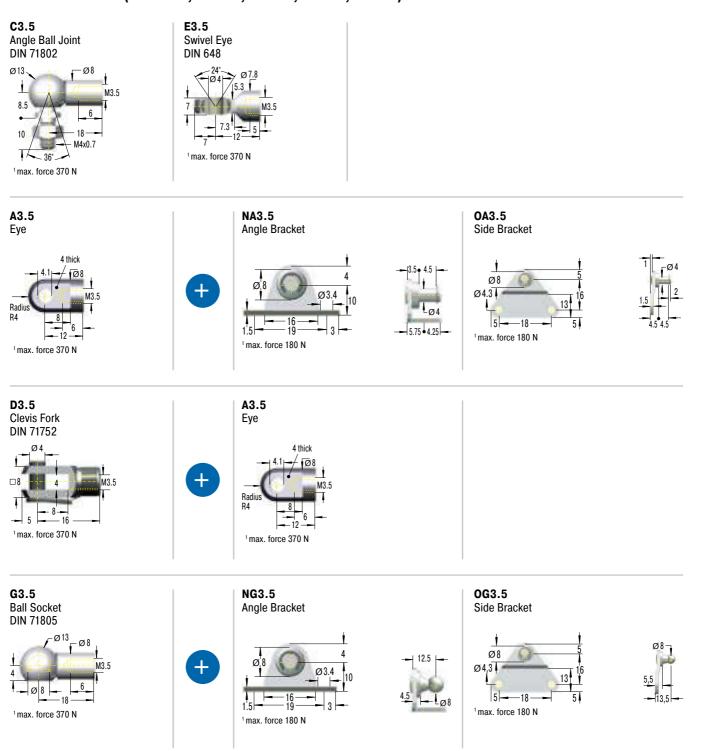
Hydraulic dampers for added convenience when operating cable cars

Mounting Accessories

for steel gas springs and hydraulic dampers

By taking advantage of the very extensive range of ACE end fittings and mounting brackets you can easily and simply install our gas springs and hydraulic dampers. You profit from the variety of DIN standard end fittings such as swivel eyes, clevis forks, angle ball joints, inline ball joints, and included ball sockets.

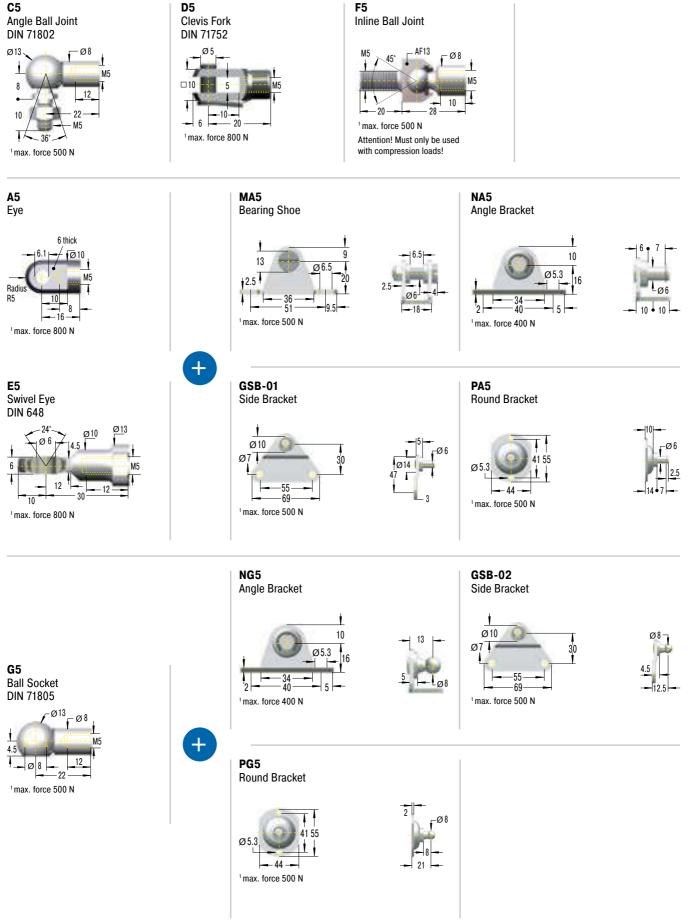
ACE also offers eye fittings made of wear-resistant steel to meet the higher specification requirements found in industrial applications. With over 30 different types available these mounting accessories provide an extensive range of combinations for optimum installations.


With the ACE selection program you can choose not only your ACE gas springs but also the ideal end fittings and mounting brackets for your individual application example.

The complete range of accessories are also available as individual components.

Infinite Combinations!

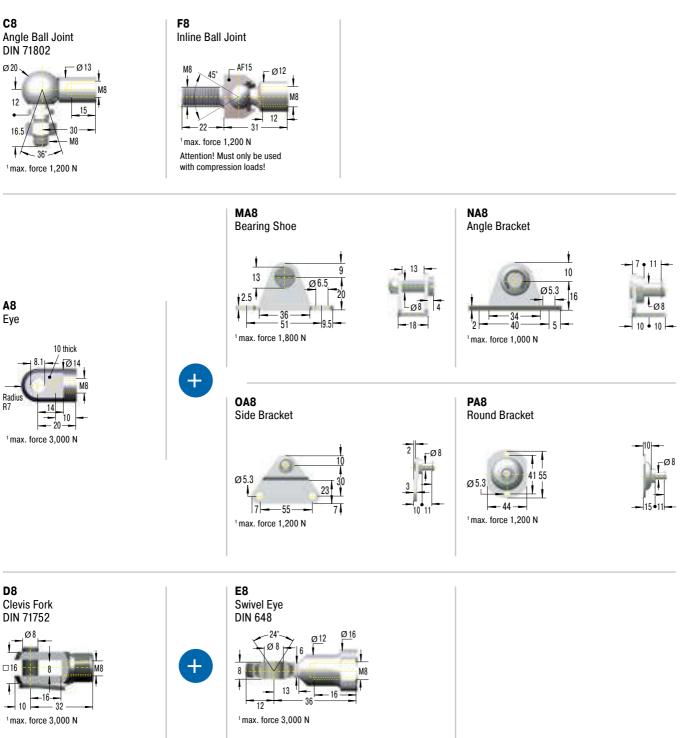
M3.5x0.6 (for GS-8, GS-10, GS-12, GZ-15, HB-12)


¹Attention! Max. static load in Newtons. Beware force increase during compression (progression) and observe max. force limit.

M5x0.8

C5

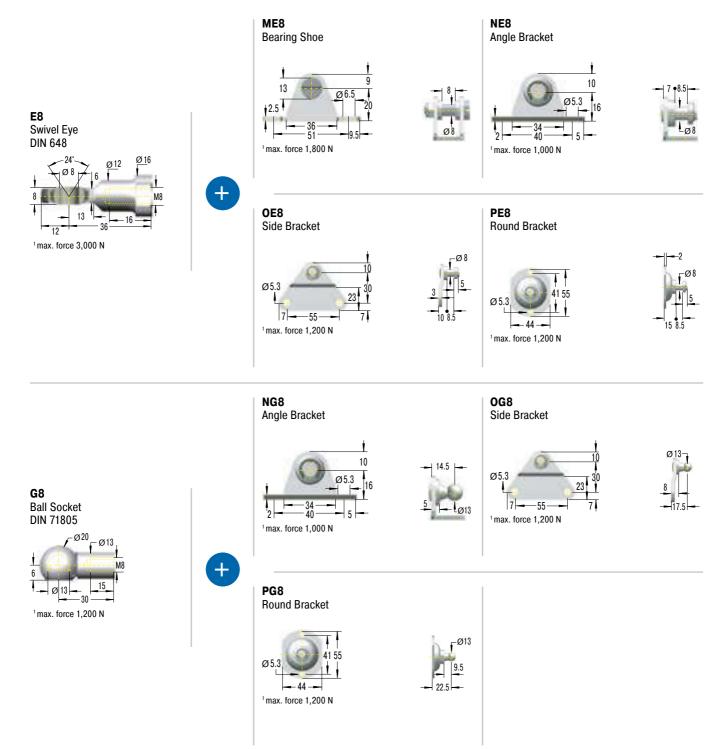
(for GS-15, HBD-15, HB-15)



¹Attention! Max. static load in Newtons. Beware force increase during compression (progression) and observe max. force limit.

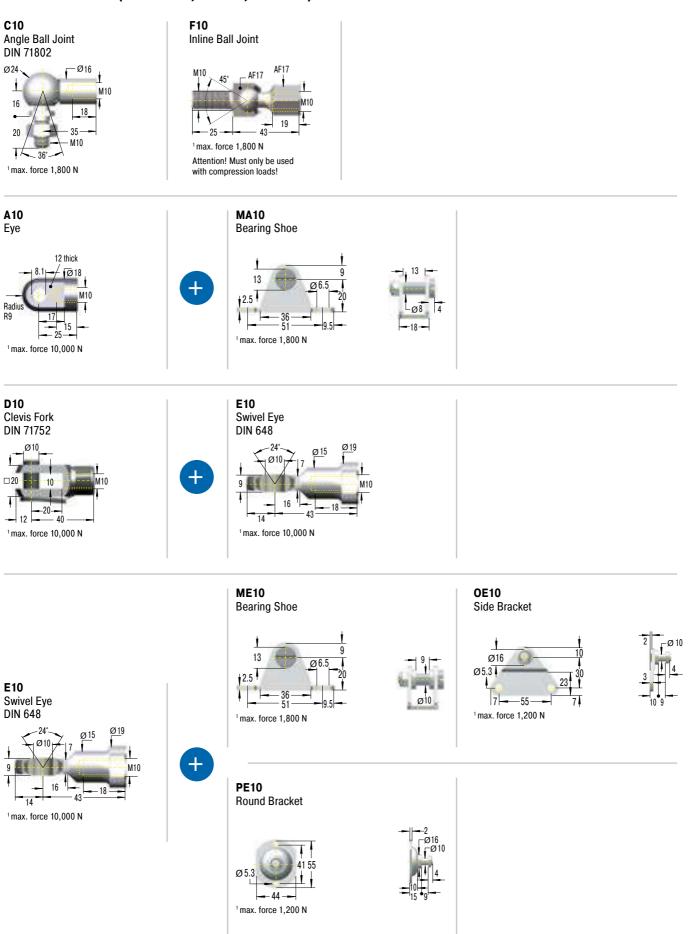
M8x1.25

(for GS-19, GS-22, GZ-19, HBD-22, HBD-28, HB-22, HB-28, DVC-32)



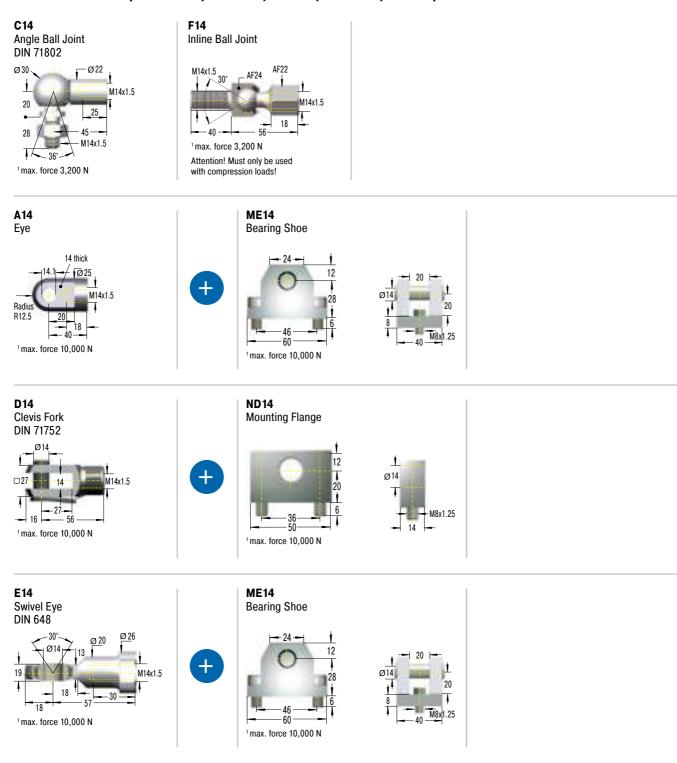
¹Attention! Max. static load in Newtons. Beware force increase during compression (progression) and observe max. force limit.

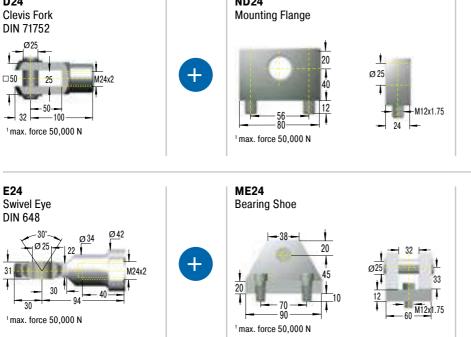
(for GS-19, GS-22, GZ-19, HBD-22, HBD-28, HB-22, HB-28, DVC-32)



M10x1.5

Issue 04.2018 - Specifications subject to change


(for GS-28, GZ-28, HBD-50)


M14x1.5

(for GS-40, GST-40, GZ-40, HBD-40, HB-40)

M24x2 (for GS-70, HB-70) D24 ND24

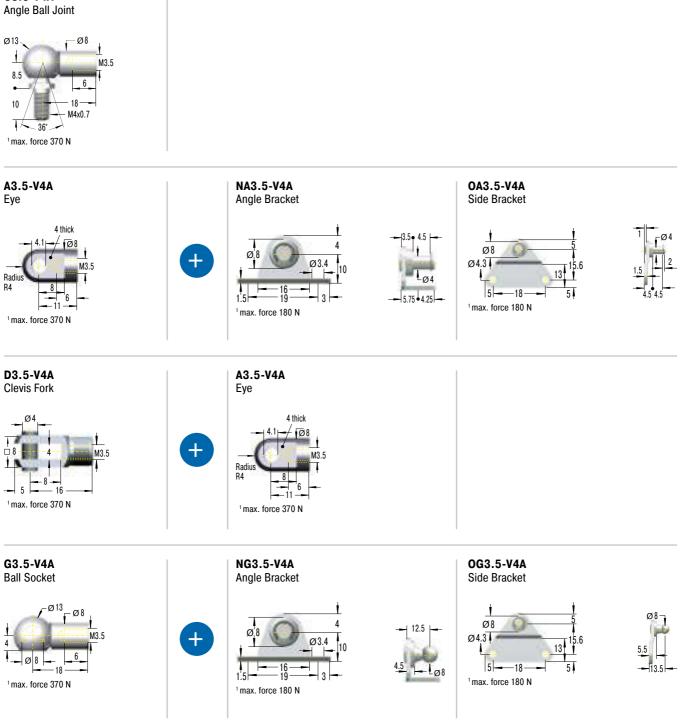
Mounting Accessories

for stainless steel gas springs and hydraulic dampers

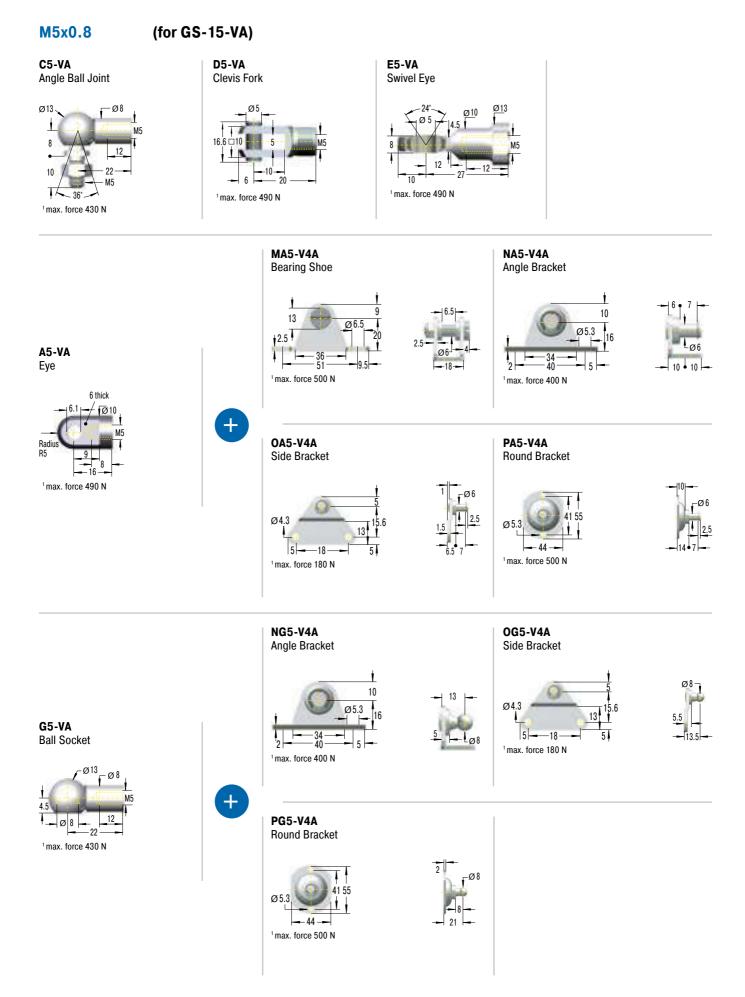
For our gas springs and hydraulic dampers made of stainless steel we also offer a flexible product range of DIN standardized end fittings and mounting brackets. These eyes, swivel eyes, clevis forks, angle ball joints, ball sockets, inline ball joints and mounting brackets are also made of sturdy stainless steel and can be easily combined.

The high-quality stainless steel accessories are rustproof and weakly magnetic. Just as with the corresponding stainless steel gas springs and hydraulic dampers, they are preferred in the food, electronics and ship building industries along with medical and cleanroom technology.

All ACE stainless steel gas springs and the appropriate mounting accessories are individually designed for each application with the ACE calculation program.


The entire range of stainless steel accessories is also available separately.

Infinite Combinations!

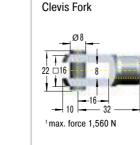


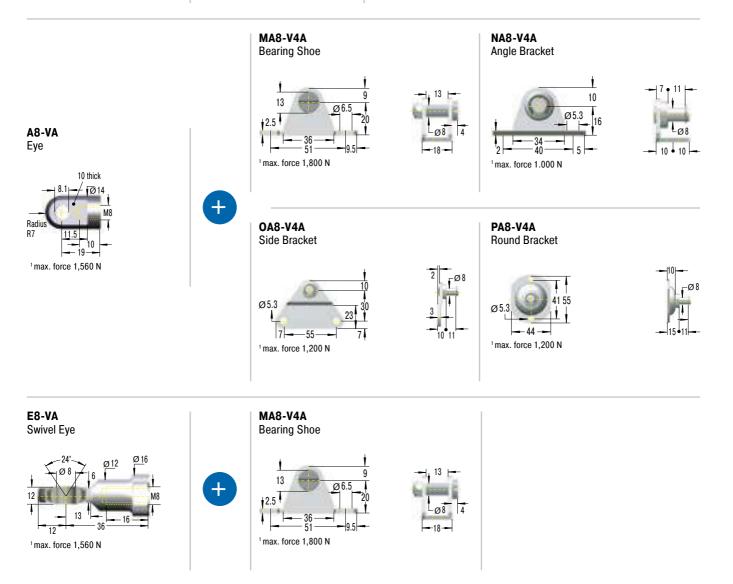
M3.5x0.6 (for GS-8-V4A, GS-10-V4A, GS-12-V4A, GZ-15-V4A)

Ø13

(for GS-19-VA, GS-22-VA, GZ-19-VA) M8x1.25

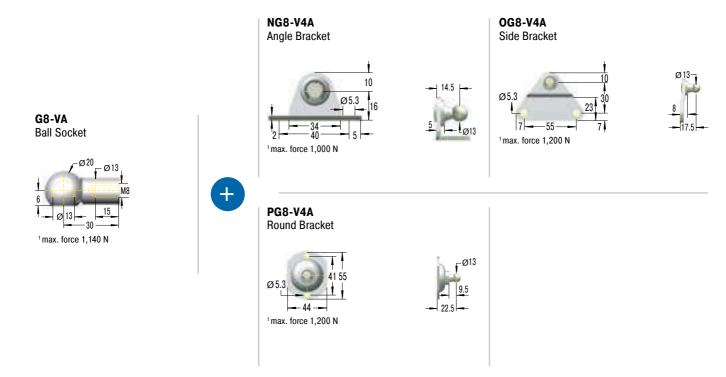
Ø 20

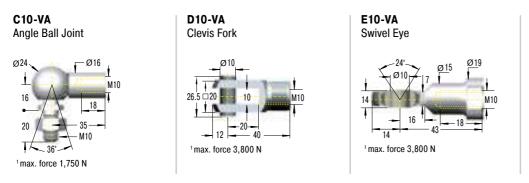

1 12

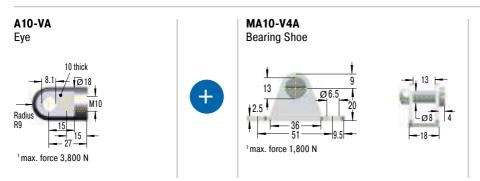

16.

17

~ 36° ¹ max. force 1,140 N

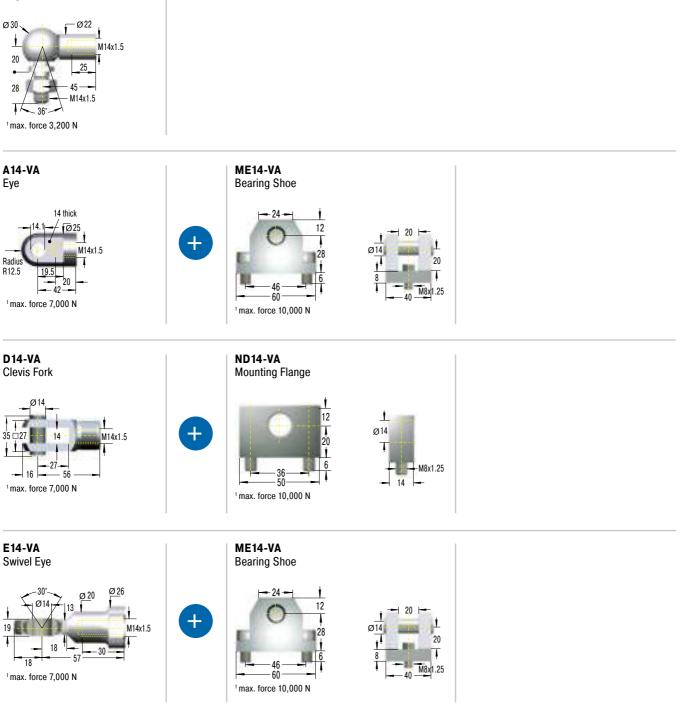

D8-VA




M8x1.25 (for GS-19-VA, GS-22-VA, GZ-19-VA)

M10x1.5

(for GS-28-VA, GZ-28-VA)



M14x1.5

(for GS-40-VA, GZ-40-VA)

C14-VA Angle Ball Joint

Hydraulic Feed Controls

Regulate feed rates in the best way

ACE Hydraulic feed controls are recommended as the perfect solution when sawing, cutting, drilling and in order to prevent the stick-slip effect on pneumatic cylinders. They can be precisely adjusted and provide speeds from 12 mm/min. $(1/2^{n}/min.)$ with a very low feed force or up to 38 m/min. $(1.5^{n}/min.)$ with a high feed rate.

These maintenance-free, ready-to-install hydraulic feed controls are self-contained hydraulic elements regulated by a precision throttle. The feed rate is set from the outside by turning the setting adjuster. The tried-and-tested rolling diaphragms used in many ACE shock absorbers also serve as a dynamic sealing element for a hermetic seal as well as volume compensation for the piston rod and provide the resetting of the piston when the force is removed.

Hydraulic Feed Controls

Page 228

Adjustable For precision adjustment of feed rates Handling modules, Linear slides, Automatic machinery, Conveyor equipment

MA, MVC

VC25

Adjustable **Designed for applications with low precision requirements** Handling modules, Linear slides, Automatic machinery, Conveyor equipment Page 230

Shorter processing times

Different feed rates

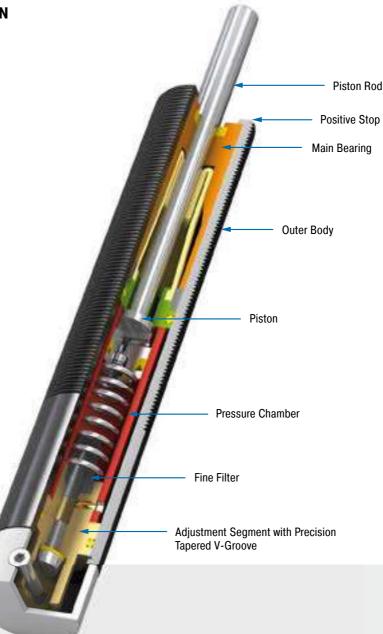
Adjustment segment at the lower end of the feed control

Most accurate calibrations

Available immediately

Easy to mount

VC25


For precision adjustment of feed rates

Adjustable Compression force 30 N to 3,500 N Stroke 15 mm to 125 mm

Precise adjustment for any type of application: Hydraulic feed controls of the product family VC are ideally suited for the precise tuning of constant feed rates. The thread of the outer body of this closed hydraulic element allows simple assembly. Designs with a smooth body can also be supplied.

As the hydraulic oil is forced out through the throttle opening, a constant feed rate is achieved on the stroke. In the models up to 55 mm (2.17") stroke, the tried and tested rolling diaphragm, known from ACE shock absorbers, serves as a dynamic seal, as volume compensation of the piston rod and as a reset element.

Precision hydraulic feed controls of the product family VC are used in automotive and industrial applications as well as in mechanical engineering and the electronics industry.

Technical Data

Compression force: 30 N to 3,500 N

Execution: $F = \emptyset$ 23.8 mm without thread FT = M25x1.5 threaded body

Piston rod diameter: Ø 8 mm

Feed rate/Compression force: Min. 0.013 m/min. at 400 N; Max. 38 m/min. at 3,500 N

Impact velocity range: At speeds of 0.3 m/s the maximum allowed energy is approx. 1 Nm for units up to 55 mm stroke and approx. 2 Nm for units 75 mm to 125 mm stroke. Where higher energies occur use a shock absorber for the initial impact. Avoid high impact velocities.

Adjustment: Infinitely adjustable

Positive stop: External positive stops 1 mm to 1.5 mm before the end of stroke provided by the customer.

Damping medium: Oil, temperature stable

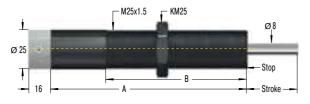
Material: Outer body: Black anodized aluminium; Piston rod: Hard chrome plated steel; Accessories: Steel with black oxide finish or nitride hardened

Mounting: In any position

Operating temperature range: 0 °C to 60 °C

Application field: Handling modules, Linear slides, Automatic machinery, Conveyor equipment, Absorption control

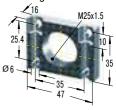
Note: Nylon button can be fitted onto piston rod. Unit may be mounted in any position.


Safety information: Do not rotate piston rod, if excessive rotation force is applied rolling seal may rupture. External materials in the surrounding area can attack the seal components and lead to a shorter service life. Please contact ACE for appropriate solution suggestions.

On request: Special oil and other special options available on request.

Adjustable

VC25FT



Air Bleed Collar


SP25

250-0044 Mounting Block

VC2555FT

For VC2515FT to VC2555FT reduction of the stroke 6.4 mm

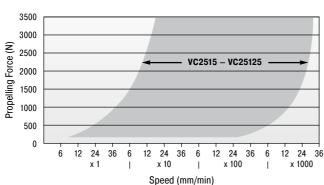
Additional accessories, mounting, installation ... see from page 47.

Complete details required when ordering

Load to be decelerated: m (kg) Impact velocity: v (m/s) Propelling force: F (N) Operating cycles per hour: c (/hr) Number of absorbers in parallel: n Ambient temperature: °C

Performance and Dimensions

Ordering Example


Type (Feed Control)	ł	ł	ł
25 for Thread Size M25			
Stroke 2.16" (55 mm)			
FT = with thread M25x1.5			
$F =$ without thread plain body ($\emptyset 0.94$ " / 23.8 mm)			

iain body (10 0.94° / 23.8 mm)

				Compression	Compression	Return Force	Return Force		Side Load Angle	
	Stroke	Α	В	force min.	force max.	min.	max.	Return Time	max.	Weight
TYPES	mm	mm	mm	N	N	N	N	s	۰	kg
VC2515FT	15	128	80	30	3,500	15	30	0.2	3	0.240
VC2530FT	30	161	110	30	3,500	5	30	0.4	2	0.280
VC2555FT	55	209	130	35	3,500	5	40	1.2	2	0.420
VC2575FT	75	283	150	50	3,500	10	50	1.7	2	0.480
VC25100FT	100	308	150	60	3,500	10	50	2.3	1	0.500
VC25125FT	125	333.5	150	70	3,500	10	60	2.8	1	0.540
VC2515F	15	128	80	30	3,500	15	30	0.2	3	0.240
VC2530F	30	161	110	30	3,500	5	30	0.2	2	0.280
VC2555F	55	209	130	35	3,500	5	40	1.2	2	0.420
VC2575F	75	283	150	50	3,500	10	50	1.7	2	0.480
VC25100F	100	308	150	60	3,500	10	50	2.3	1	0.500
/C25125F	125	333.5	150	70	3,500	10	60	2.8	1	0.540

Suffix FT: M25x1.5 threaded body. Suffix F: plain body 23.8 mm dia. (without thread), with optional clamp type mounting block.

Operating range VC

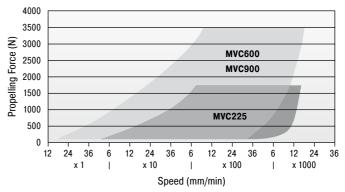
Accessories with Mounting Example

Installed with air bleed collar SP25 (part no. 10783-000)

MA, MVC

Designed for applications with low precision requirements

Adjustable


Compression force 8 N to 3,500 N Stroke 7 mm to 40 mm

Many application options: the hydraulic feed controls in models MA and MVC are similar to that of the VC model. However, these hydraulic controls have been designed for applications that require less precision.

There are also plenty of accessories for the MA and MVC models. All products are ready-to-install, maintenance-free, stable in temperature and avoid stick-slip effect. Speeds from 0.47"/min. (12 mm/min.) can be driven at a low thrust force using the adjustment screw on the base of the hydraulic control.

Hydraulic feed controls with the designations MA and MVC are especially used in handling modules or linear carriages and also for applications with changing usage data.

Operating Range MVC225 to MVC900

Performance and Dimensions

· or ionitatio									
	Stroke	Compression force min.	Compression force max.	Return Force min.	Return Force max.	Return Time	¹ Side Load Angle max.	М	Weight
TYPES	mm	N	N	N	N	S	۰		kg
MA30M	8	8	80	1.7	5.3	0.3	2	M8x1	0.013
MA50M	7.2	40	160	3	6	0.3	2	M10x1	0.025
MA35	10.2	15	200	5	11	0.2	2	1/2-20 UNF / M12x1	0.043
MA150	12.7	20	300	3	5	0.4	2	9/16-18 UNF / M14x1.5	0.061
MVC225	19	25	1,750	5	10	0.65	2	3/4-16 UNF / M20x1.5	0.173
MVC600	25	65	3,500	10	30	0.85	2	1-12 UNF / M25x1.5	0.352
MVC900	40	70	3,500	10	35	0.95	2	1-12 UNF / M25x1.5	0.414

¹ For applications with higher side load angles consider using the side load adaptor, pages 44 to 51.

Technical Data

Compression force: 8 N to 3,500 N Execution: Thread M8 to M25

Impact velocity range: At speeds of 0.3 m/s the maximum allowed energy is approx. 2 Nm. Where higher energies occur use a shock absorber for the initial impact. Avoid high impact velocities.

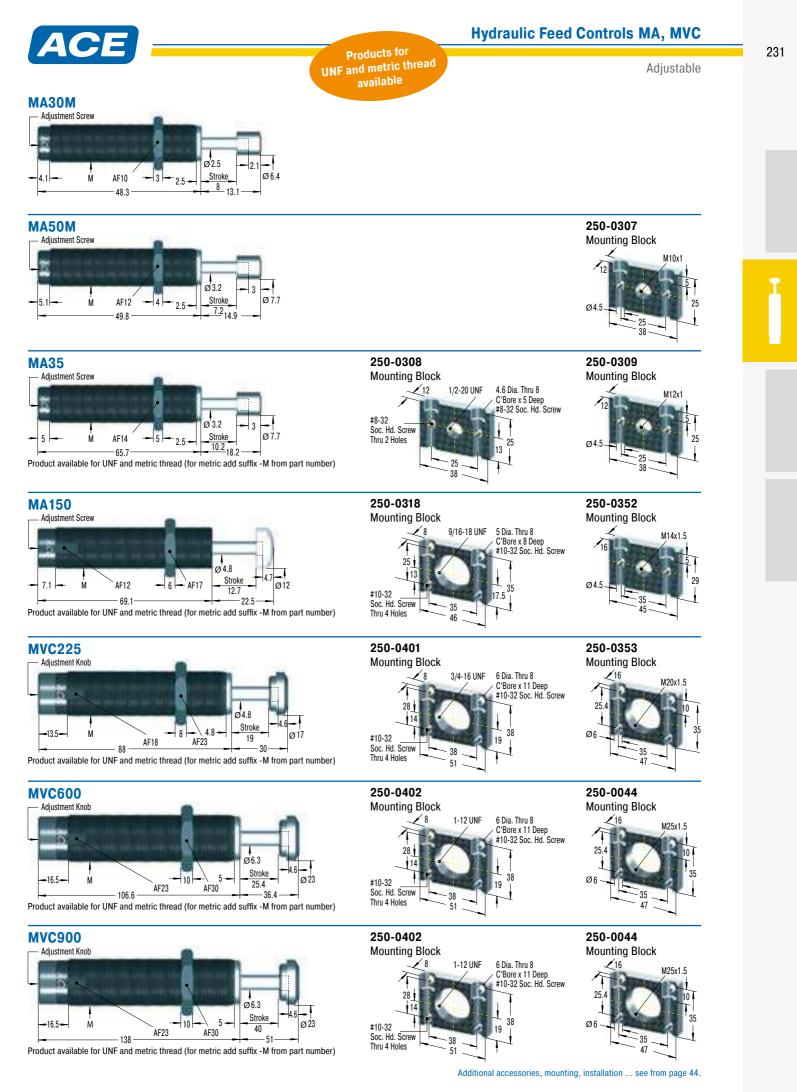
Adjustment: Hard impact at the start of stroke, turn towards 9 or PLUS. Hard impact at the end of stroke, turn towards 0 or MINUS.

Positive stop: Integrated

Damping medium: Oil, temperature stable

Material: Outer body: Nitride hardened steel; Piston rod: Steel with black oxide finish or nitride hardened

Mounting: In any position


Operating temperature range: 0 °C to 66 °C

Application field: Handling modules, Linear slides, Automatic machinery, Conveyor equipment, Absorption control

Note: Damper is preset at delivery in a neutral position between hard and soft.

Safety information: External materials in the surrounding area can attack the seal components and lead to a shorter service life. Please contact ACE for appropriate solution suggestions.

On request: Nickel-plated, weartec finish (seawater resistant) or other special options available on request.

ACE Controls Inc. • 23425 Industrial Park Dr. Farmington • US-48335 Michigan • T +1 800-521-3320 • F +1 248-476-2470 • shocks@acecontrols.com • www.acecontrols.com

Rotary Dampers

Small dampers refine your design

ACE rotary dampers mainly provide an invisible yet valuable service as a maintenance-free machine element to allow controlled deceleration of rotary or linear movements.

They are often necessary to make careful opening and closing of small lids, compartments and drawers possible and they protect sensitive components while increasing the quality and value of products. They are easy to integrate. The harmoniously gentle movements of these little decelerators can be achieved with continual rotation or with limited pivoting angles. They slow down left, right or double sided rotation. Suitable for almost any application and currently also available in adjustable variations, they provide braking torques of 0.05 Ncm to 40 Nm.

Partial Rotation Angle, Adjustable e.g. FYT-H1 and FYN-H1

Sealing Ring

Fluid

Damping Vane

General Function

Rotary dampers operate on the principle of fluid damping. The damping moment is determined by the viscosity of the fluid and the dimensioning of the throttle gap or throttle orifices.

Rotary Dampers with Continuous Rotation

Rotate for the plus in quality: For smooth, quiet movements of small hoods, flaps and fans these continuously rotating rotary dampers from ACE decelerate either right, left or two-sided rotation right in the pivot point or linear through a gear and gear rack. The harmoniously gentle process protects components and increases the quality and value of products. The maintenance-free, ready-to-install ACE rotary dampers are filled with an inert fluid, usually silicone oil. The viscosity of the fluid and the sizing of the throttling gap determine the damping torque. The FFD series is the only exception: These fluid-free rotary dampers operate according to the principle of friction.

The continuously rotating rotary dampers with the designations FRT, FRN, FFD, FDT and FDN are used in household and medical devices as well as in the automotive, electronics and furniture industries.

Rotary Dampers with Partial Rotation Angle

For controlled and gentle deceleration: The damping direction of this rotary damper, which is available with adjustable damping torque, can be right, left or two-sided rotation. They can be installed directly in the pivot point of a construction and achieve uniform, quiet movements, which increases quality and value and protects sensitive components. The products are maintenance-free, ready-to-install and filled with an inert fluid, usually silicone oil. A rotor movement presses the fluid from one chamber into the other. The damping torque is determined by the viscosity of the fluid and the sizing of the throttling gap the throttle holes. During each reversal of movement, depending on the frame size a certain return damping torque develops.

These solutions are used in the automotive sector, in many industrial applications, in the electronics and furniture industries as well as in medical devices.

High protection of sensitive components Various designs for every application

Partial Rotation Angle e.g. FYN-N1 e.g. FRT-E2 Continuous Rotation e.g. FRT-E2

Rotary Dampers

Continuous rotation

FRT-E2 Continuous Rotation Small and lightweight for finest braking

FRT-G2 Continuous Rotation Small and lightweight for finest braking

FRT-C2 and FRN-C2 Continuous Rotation Flexible and cost efficient use

FRT-D2 and FRN-D2 Continuous Rotation Flexible and cost efficient use

FRT-F2/K2 and FRN-F2/K2

Continuous Rotation For a long service life

Continuous Rotation Precise braking without oil

Continuous Rotation

FFD

FDT

FDN Continuous Rotation The flat disc brake for one direction of rotation

The flat disc brake for two-sided damping

Page 236

Page 237

Page 238

Page 239

Page 240

Page 241

Page 242

Page 243

235

Rotary Dampers

Partial rotation angle

FYN-P1 Partial Rotation Angle Small diameter, large damping torques

FYN-N1 Partial Rotation Angle Small diameter, large damping torques

FYN-U1 Partial Rotation Angle Small, strong and very robust

FYN-S1 Partial Rotation Angle The flat damper for constant component protection Page 247

Page 246

Page 244

Page 245

0

Partial rotation angle, adjustable

FYT-H1 and FYN-H1 Partial Rotation Angle, Adjustable Specifically adjustable, strong braking force

FYT-LA3 and FYN-LA3

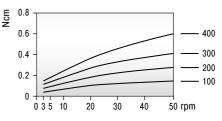
Partial Rotation Angle, Adjustable **Adjustable high performance**

Page 248

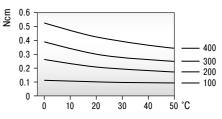
Page 249

FRT-E2

Small and lightweight for finest braking


Continuous Rotation Damping torque 0.1 Ncm to 0.4 Ncm

The damping direction of the smallest ACE FRT-E2 rotary dampers with plastic body is rotating on both sides. They can brake directly in the pivot point or linear through a gear and gear rack. ACE rotary dampers are maintenance-free and ready-to-install.



Characteristics

At 23 °C ambient temperature

At 20 rpm rotational speed

Technical Data

Construction size: Ø 10 mm

Rotational speed max.: 50 rpm

Lifetime: 50,000 cycles (1 cycle = 360° left-hand, 360° right-hand). Even after this time, the dampers still produce over approx. 80 % of their original damping moment. The service life may be significantly higher or lower, depending on the application.

Operating temperature range: 0 °C to 50 °C

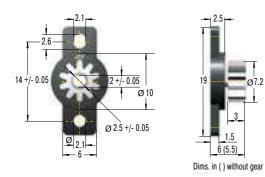
Pressure angle: 20°

Material: Outer body, Shaft, Gear: Plastic

Mounting: In any position

Tooth: Involute gearing

P.C.D.: 6 mm


No. of teeth: 10

Module: 0.6

Mounting information: No axial or radial forces may be induced via the shaft.

Safety information: Do not use rotary dampers as supports. Provide an external guide or support.

On request: Special designs available on request. Toothed plastic racks (modules 0.5 to 1.0) are available for the rotary dampers with pinions.

Performance

Feriormance				
TYPES	¹ Damping torque Ncm	Damping direction	Gear	Weight kg
FRT-E2-100	0.10 +/- 0.05	bidirectional	without	0.00032
FRT-E2-200	0.20 +/- 0.07	bidirectional	without	0.00032
FRT-E2-300	0.30 +/- 0.08	bidirectional	without	0.00032
FRT-E2-400	0.40 +/- 0.10	bidirectional	without	0.00032
FRT-E2-100-G1	0.10 +/- 0.05	bidirectional	with	0.00041
FRT-E2-200-G1	0.20 +/- 0.07	bidirectional	with	0.00041
FRT-E2-300-G1	0.30 +/- 0.08	bidirectional	with	0.00041
FRT-E2-400-G1	0.40 +/- 0.10	bidirectional	with	0.00041

¹ The indicated damping torque refers to a rotational speed of 20 rpm and an ambient temperature of 23 °C.

Issue 04.2018 - Specifications subject to change

FRT-G2

Small and lightweight for finest braking

Continuous Rotation Damping torque 0.2 Ncm to 1 Ncm

The damping direction of the ACE FRT-G2 product family with plastic body is rotating on both sides. The small rotary dampers can brake directly in the pivot point or linear through a gear and gear rack. ACE rotary dampers are maintenance-free and ready-to-install.

Technical Data

Construction size: Ø 15 mm

Rotational speed max.: 50 rpm

Lifetime: 50,000 cycles (1 cycle = 360° left-hand, 360° right-hand). Even after this time, the dampers still produce over approx. 80 % of their original damping moment. The service life may be significantly higher or lower, depending on the application.

Operating temperature range: 0 °C to 50 °C

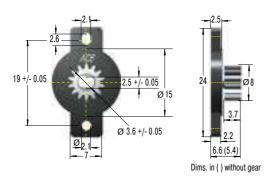
Pressure angle: 20°

Material: Outer body, Shaft, Gear: Plastic

Mounting: In any position

Tooth: Involute gearing

P.C.D.: 7 mm

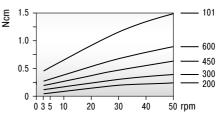

No. of teeth: 14

Module: 0.5

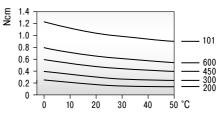
Mounting information: No axial or radial forces may be induced via the shaft.

Safety information: Do not use rotary dampers as supports. Provide an external guide or support.

On request: Special designs available on request. Toothed plastic racks (modules 0.5 to 1.0) are available for the rotary dampers with pinions.



	¹ Damping torque	Damping direction	Gear	Weight
TYPES	Ncm			kg
FRT-G2-200	0.20 +/- 0.07	bidirectional	without	0.00060
FRT-G2-300	0.30 +/- 0.08	bidirectional	without	0.00060
FRT-G2-450	0.45 +/- 0.10	bidirectional	without	0.00060
FRT-G2-600	0.60 +/- 0.12	bidirectional	without	0.00060
FRT-G2-101	1.00 +/- 0.20	bidirectional	without	0.00060
FRT-G2-200-G1	0.20 +/- 0.07	bidirectional	with	0.00080
FRT-G2-300-G1	0.30 +/- 0.08	bidirectional	with	0.00080
FRT-G2-450-G1	0.45 +/- 0.10	bidirectional	with	0.00080
FRT-G2-600-G1	0.60 +/- 0.12	bidirectional	with	0.00080
FRT-G2-101-G1	1.00 +/- 0.20	bidirectional	with	0.00080



Characteristics

At 23 °C ambient temperature

At 20 rpm rotational speed

¹ The indicated damping torque refers to a rotational speed of 20 rpm and an ambient temperature of 23 °C.

FRT-C2 and FRN-C2

Flexible and cost efficient use

Continuous Rotation Damping torque 2 Ncm to 3 Ncm

The damping direction of the simple FRT-C2 and FRN-C2 is either right, left or two-sided rotation. These ACE rotary dampers with plastic body can decelerate directly in the pivot point or linear through a gear and gear rack. ACE rotary dampers are maintenance-free and ready-to-install.

Technical Data

Construction size: Ø 15 mm

Rotational speed max.: 50 rpm

Lifetime: 50,000 cycles (1 cycle = 360° left-hand, 360° right-hand). Even after this time, the dampers still produce over approx. 80 % of their original damping moment. The service life may be significantly higher or lower, depending on the application.

Operating temperature range: 0 °C to 50 °C

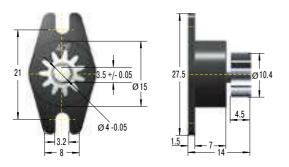
Pressure angle: 20°

Material: Outer body, Gear: Plastic; Shaft: Plastic, steel

Mounting: In any position

Tooth: Involute gearing

P.C.D.: 8.8 mm


No. of teeth: 11

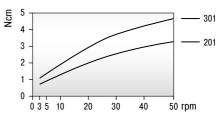
Module: 0.8

Mounting information: No axial or radial forces may be induced via the shaft.

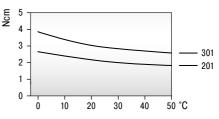
Safety information: Do not use rotary dampers as supports. Provide an external guide or support.

On request: Special designs available on request. Toothed plastic racks (modules 0.5 to 1.0) are available for the rotary dampers with pinions.

Performance


i chomanoc				
	¹ Damping torque	Damping direction	Gear	Weight
TYPES	Ncm			kg
FRT-C2-201	2 +/- 0.6	bidirectional	without	0.002
FRT-C2-301	3 +/- 0.8	bidirectional	without	0.002
FRT-C2-201-G1	2 +/- 0.6	bidirectional	with	0.002
FRT-C2-301-G1	3 +/- 0.8	bidirectional	with	0.002
FRN-C2-R201	2 +/- 0.6	right	without	0.002
FRN-C2-R301	3 +/- 0.8	right	without	0.002
FRN-C2-R201-G1	2 +/- 0.6	right	with	0.002
FRN-C2-R301-G1	3 +/- 0.8	right	with	0.002
FRN-C2-L201	2 +/- 0.6	left	without	0.002
FRN-C2-L301	3 +/- 0.8	left	without	0.002
FRN-C2-L201-G1	2 +/- 0.6	left	with	0.002
FRN-C2-L301-G1	3 +/- 0.8	left	with	0.002

¹ The indicated damping torque refers to a rotational speed of 20 rpm and an ambient temperature of 23 °C.



Characteristics

At 23 °C ambient temperature

At 20 rpm rotational speed

FRT-D2 and FRN-D2

Flexible and cost efficient use

Continuous Rotation Damping torque 5 Ncm to 15 Ncm

The damping direction of the ACE FRT-D2 and FRN-D2 rotary dampers with plastic body is either the right, left or two-sided rotation. They can decelerate directly in the pivot point or linear through a gear and gear rack. ACE rotary dampers are maintenance-free and ready-to-install.

Technical Data

Construction size: Ø 25 mm

Rotational speed max.: 50 rpm

Lifetime: 50,000 cycles (1 cycle = 360° left-hand, 360° right-hand). Even after this time, the dampers still produce over approx. 80 % of their original damping moment. The service life may be significantly higher or lower, depending on the application.

Operating temperature range: 0 °C to 50 °C

Pressure angle: 20°

Material: Outer body, Gear: Plastic; Shaft: Plastic, steel

Mounting: In any position

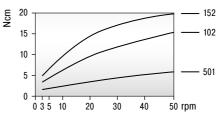
Tooth: Involute gearing (addendum modification coefficient: +0.375)

P.C.D.: 12 mm

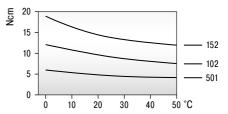
No. of teeth: 12

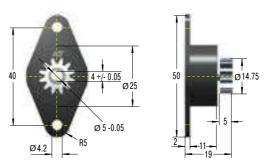
Module: 1

Mounting information: No axial or radial forces may be induced via the shaft.


Safety information: Do not use rotary dampers as supports. Provide an external guide or support.

On request: Special designs available on request. Toothed plastic racks (modules 0.5 to 1.0) are available for the rotary dampers with pinions.




Characteristics

At 23 °C ambient temperature

At 20 rpm rotational speed

Performan

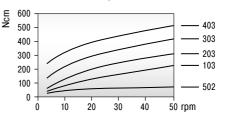
¹ Damping to	rque Damping direction		
TYPES Ncm		Gear	Weight kg
FRT-D2-102 10 +/- 2	bidirectional	without	0.008
FRT-D2-152 15 +/- 3	bidirectional	without	0.008
FRT-D2-501 5 +/- 1	bidirectional	without	0.008
FRT-D2-102-G1 10 +/- 2	bidirectional	with	0.009
FRT-D2-152-G1 15 +/- 3	bidirectional	with	0.009
FRT-D2-501-G1 5 +/- 1	bidirectional	with	0.009
FRN-D2-R102 10 +/- 2	right	without	0.012
FRN-D2-R152 15 +/- 3	right	without	0.012
FRN-D2-R501 5 +/- 1	right	without	0.012
FRN-D2-R102-G1 10 +/- 2	right	with	0.013
FRN-D2-R152-G1 15 +/- 3	right	with	0.013
FRN-D2-R501-G1 5 +/- 1	right	with	0.013
FRN-D2-L102 10 +/- 2	left	without	0.012
FRN-D2-L152 15 +/- 3	left	without	0.012
FRN-D2-L501 5 +/- 1	left	without	0.012
FRN-D2-L102-G1 10 +/- 2	left	with	0.013
FRN-D2-L152-G1 15 +/- 3	left	with	0.013
FRN-D2-L501-G1 5 +/- 1	left	with	0.013

¹ The indicated damping torque refers to a rotational speed of 20 rpm and an ambient temperature of 23 °C.

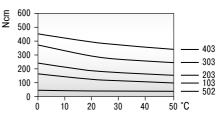
Issue 04.2018 – Specifications subject to change

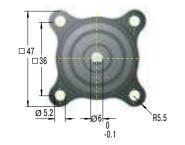
FRT-F2/K2 and FRN-F2/K2

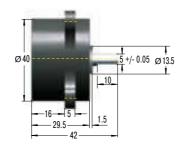
For a long service life


Continuous Rotation Damping torque 200 Ncm to 400 Ncm

The damping direction of FRT F2/K2 and FRN-F2/K2 is either the right, left or two-sided rotation. With a damping torque of up to 400 Ncm, this product family can even handle heavy components. These ACE rotary dampers can decelerate directly in the pivot point or linear through a gear and gear rack. They are maintenance-free and ready-to-install.




Characteristics


At 23 °C ambient temperature

At 20 rpm rotational speed

Performance

	¹ Damping torque	Damping direction	Weight
TYPES	Ncm		kg
FRT-K2-502	50 +/- 10	bidirectional	0.080
FRT-K2-103	100 +/- 20	bidirectional	0.080
FRT-F2-203	200 +/- 40	bidirectional	0.115
FRT-F2-303	300 +/- 80	bidirectional	0.115
FRT-F2-403	400 +/- 100	bidirectional	0.115
FRN-K2-R502	50 +/- 10	right	0.057
FRN-K2-R103	100 +/- 20	right	0.057
FRN-F2-R203	200 +/- 40	right	0.090
FRN-K2-L502	50 +/- 10	left	0.057
FRN-K2-L103	100 +/- 20	left	0.057
FRN-F2-L203	200 +/- 40	left	0.090

¹ The indicated damping torque refers to a rotational speed of 20 rpm and an ambient temperature of 23 °C.

Technical Data

Construction size: Ø 40 mm

Rotational speed max.: 50 rpm

Lifetime: 50,000 cycles (1 cycle = 360° left-hand, 360° right-hand). Even after this time, the dampers still produce over approx. 80 % of their original damping moment. The service life may be significantly higher or lower, depending on the application.

Operating temperature range: 30 °C to 50 °C

Material: Outer body: Plastic; Shaft: Steel

Mounting: In any position

Mounting information: No axial or radial forces may be induced via the shaft.

Safety information: Do not use rotary dampers as supports. Provide an external guide or support.

On request: Special designs available on request.

ACE Controls Inc. · 23425 Industrial Park Dr. Farmington · US-48335 Michigan · T +1 800-521-3320 · F +1 248-476-2470 · shocks@acecontrols.com · www.acecontrols.com

FFD Precise braking without oil

Continuous Rotation Damping torgue 0.1 Nm to 3 Nm

In comparison to other rotary dampers, the ACE FFD product family does not need any fluid to generate the damping torque, but rather works on the principle of friction. That means temperature or speed changes have virtually no influence on the damping torque. The FFD is available in two different body variants and two types of bearings. ACE rotary dampers are maintenance-free and ready-to-install.

Technical Data

Construction size: Ø 25 mm to 30 mm

Rotational speed max.: 30 rpm

Lifetime: 30,000 cycles (1 cycle = 360° left-hand, 360° right-hand). Even after this time, the dampers still produce over approx. 80 % of their original damping moment. The service life may be significantly higher or lower, depending on the application.

Operating temperature range: -10 °C to 60 °C

Material: Outer body: Plastic

Mounting: In any position

Ø 3.3

Information to the shaft: $\emptyset + 0 / -0.03$ Hardness > HRC55, surface smoothness $R_{2} < 1 \mu m$

Mounting information: Turn the shaft in the opposite direction to the brake direction to avoid damaging the freewheel mount. No axial or radial forces may be induced via the shaft.

Safety information: Do not use rotary dampers as supports. Provide an external guide or support.

On request: Special designs available on request.

Ordering Example

Thickness 4 mm

.

FFD-25-FS-L-102 Friction Damper _ Body Ø Mounting Style (flange = F, standard = S) Model (standard = S, high = W) Damping Direction (right = R, left = L) Damping Torque see chart _

Complete details required when ordering

Damping torgue 102 = 0.1 Nm Damping torque 502 = 0.5 Nm Damping torque 103 = 1.0 Nm Damping torque 153 = 1.5 Nm Damping torque 203 = 2.0 Nm Damping torgue 253 = 2.5 Nm Damping torque 303 = 3.0 Nm Note dimension C.

Model Type Prefix

- FS = Mounting Style with Flange, Model standard
- FW = Mounting Style with Flange, Model high
- SS = Mounting Style Standard, Model standard
- SW = Mounting Style Standard, Model high
- Combinations with W for higher damping torque.

Flange Type

	¹ Damping torgue	Damping direction	Model	Α	В	С	D	Е	F	G	Н	1	J	Weight
TYPES	Nm			mm	mm	mm	kg							
FFD-25SS	0.1/0.5/1.0	right or left	SS	25	6	13	3	42	34	21	6.2	16	4	0.012
FFD-28SS	0.1/0.5/1.0	right or left	SS	28	8	13	3	44	36	24	8.2	16	4	0.014
FFD-30SS	0.1/0.5/1.0/1.5	right or left	SS	30	10	13	3	46	38	26	10.2	16	4	0.016
FFD-25FS	0.1/0.5/1.0	right or left	FS	25	6	13	3	42	34	21	6.2	16	4	0.013
FFD-28FS	0.1/0.5/1.0	right or left	FS	28	8	13	3	44	36	24	8.2	16	4	0.014
FFD-30FS	0.1/0.5/1.0/1.5	right or left	FS	30	10	13	3	46	38	26	10.2	16	4	0.017
FFD-25SW	1.0/1.5/2.0	right or left	SW	25	6	19	3	42	34	21	6.2	22	4	0.023
FFD-28SW	1.0/1.5/2.0	right or left	SW	28	8	19	3	44	36	24	8.2	22	4	0.025
FFD-30SW	1.5/2.0/2.5/3.0	right or left	SW	30	10	19	3	46	38	26	10.2	22	4	0.030
FFD-25FW	1.0/1.5/2.0	right or left	FW	25	6	19	3	42	34	21	6.2	22	4	0.024
FFD-28FW	1.0/1.5/2.0	right or left	FW	28	8	19	3	44	36	24	8.2	22	4	0.027
FFD-30FW	1.5/2.0/2.5/3.0	right or left	FW	30	10	19	3	46	38	26	10.2	22	4	0.031

Standard Type

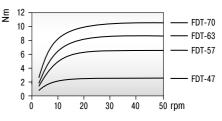
¹ The indicated damping torque refers to a rotational speed of 20 rpm and an ambient temperature of 23 °C.

241

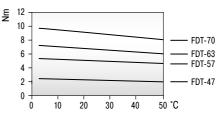
FDT

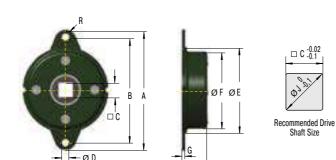
242

The flat disc brake for two-sided damping


Continuous Rotation Damping torque 2 Nm to 8.7 Nm

The damping direction of the flat constructive ACE rotary damper FDT with robust steel body is two-sided rotation. It can brake directly in the pivot point of the square receptacle. ACE rotary dampers are maintenance-free and ready-to-install.




Characteristics

At 23 °C ambient temperature

At 20 rpm rotational speed

	¹ Damping torque	Damping direction	Α	В	С	D	Е	F	G	Н	R	J	Weight
TYPES	Nm		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
FDT-47	2.0 +/- 0.3	bidirectional	65	56	8	4.5	47	42.8	1.6	10.3	4.5	10	0.050
FDT-57	4.7 +/- 0.5	bidirectional	79	68	10	5.5	57	52.4	1.6	11.2	5.5	13	0.075
FDT-63	6.7 +/- 0.7	bidirectional	89	76	12.5	6.5	63	58.6	1.6	11.3	6.5	17	0.095
FDT-70	8.7 +/- 0.8	bidirectional	95	82	12.5	6.5	70	65.4	1.6	11.3	6.5	17	0.110

ACE Controls Inc. + 23425 Industrial Park Dr. Farmington + US-48335 Michigan + T +1 800-521-3320 + F +1 248-476-2470 + shocks@acecontrols.com + www.acecontrols.com

Technical Data

Construction size: Ø 47 mm to 70 mm

Rotational speed max.: 50 rpm

Lifetime: 50,000 cycles (1 cycle = 360° left-hand, 360° right-hand). Even after this time, the dampers still produce over approx. 80 % of their original damping moment. The service life may be significantly higher or lower, depending on the application.

Operating temperature range: -10 °C to 50 °C

 $\label{eq:material:outer body: Steel; Output shaft sleeve: Nylon$

Mounting: In any position

Mounting information: No axial or radial forces may be induced via the shaft.

Safety information: Do not use rotary dampers as supports. Provide an external guide or support.

On request: Special designs available on request.

FDN

The flat disc brake for one direction of rotation

Continuous Rotation Damping torque 2 Nm to 11 Nm

The damping direction of the flat, strong FDN rotary dampers with steel body can be either right or left rotation. They can brake directly in the pivot point. ACE rotary dampers are maintenance-free and ready-to-install.

Technical Data

Construction size: Ø 47 mm to 70 mm

Rotational speed max.: 50 rpm

Lifetime: 50,000 cycles (1 cycle = 360° left-hand, 360° right-hand). Even after this time, the dampers still produce over approx. 80 % of their original damping moment. The service life may be significantly higher or lower, depending on the application.

Operating temperature range: -10 °C to 50 °C

Material: Outer body: Steel; Output shaft sleeve: nylon with metal freewheel

Mounting: In any position

Information to the shaft:

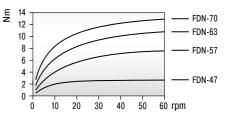
FDN-47: Ø 6 +0 / -0.03 FDN-57 to FDN-70: Ø 10 +0 / -0.03 Hardness > HRC55, surface smoothness R_z < 1 μ m

Mounting information: Turn the shaft in the opposite direction to the brake direction to avoid damaging the freewheel mount. No axial or radial forces may be induced via the shaft.

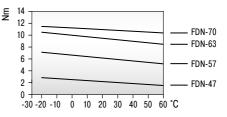
Safety information: Do not use rotary dampers as supports. Provide an external guide or support.

On request: Special designs available on request.

Performance and Dimensions


	¹ Damping torque	Damping direction	Α	В	С	D	E	F	G	Н	R	Weight
TYPES	Nm		mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
FDN-47-R	2.0 +/- 0.3	right	65	56	6	4.5	47	42.8	1.6	10.3	4.5	0.054
FDN-57-R	5.5 +/- 0.3	right	79	68	10	5.5	57	52.4	1.6	14	5.5	0.095
FDN-63-R	8.5 +/- 0.8	right	89	76	10	6.5	63	58.6	1.6	13.9	6.5	0.115
FDN-70-R	11.0 +/- 1.0	right	95	82	10	6.5	70	65.4	1.6	13	6.5	0.135
FDN-47-L	2.0 +/- 0.3	left	65	56	6	4.5	47	42.8	1.6	10.3	4.5	0.054
FDN-57-L	5.5 +/- 0.3	left	79	68	10	5.5	57	52.4	1.6	14	5.5	0.095
FDN-63-L	8.5 +/- 0.8	left	89	76	10	6.5	63	58.6	1.6	13.9	6.5	0.115
FDN-70-L	11.0 +/- 1.0	left	95	82	10	6.5	70	65.4	1.6	13	6.5	0.135

¹ The indicated damping torque refers to a rotational speed of 20 rpm and an ambient temperature of 23 °C.



Characteristics

At 23 °C ambient temperature

At 20 rpm rotational speed

FYN-P1

Small diameter, large damping torques

Partial Rotation Angle Damping torque 100 Ncm to 180 Ncm

The damping direction of the rotary damper FYN-P1 can be either right or left rotation. The dampers can be directly mounted in the pivot point. During each reverse movement of the unilateral decelerating versions there is a certain return damping torque that depends on the size. Differentiation of the damping direction through the coloured shaft. ACE rotary dampers are maintenance-free and ready-to-install.

Technical Data

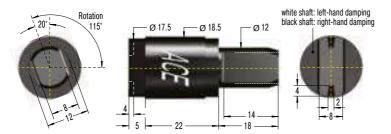
Construction size: Ø 18.5 mm

Lifetime: 50,000 cycles, even after this time, the dampers still produce over approx. 80 % of their original damping moment. The service life may be significantly higher or lower, depending on the application.

Operating temperature range: -5 °C to 50 °C

Material: Outer body, Shaft: Plastic

Mounting: In any position


Rotation angle max.: 115°

Note: Damping direction: Right hand damping = damping action in clockwise direction (when looking onto the output shaft or output shaft sleeve, depending on the damper type). A play of approx. 5° can occur at the beginning of movement.

Mounting information: No axial or radial forces may be induced via the shaft.

Safety information: Do not use rotary dampers as supports. Provide an external guide or support.

On request: Special designs available on request.

Performance

TYPES	Damping torque Ncm	Return Damping Torque Ncm	Damping direction	Weight kg
FYN-P1-R103	100	30	right	0.011
FYN-P1-R153	150	50	right	0.011
FYN-P1-R183	180	80	right	0.011
FYN-P1-L103	100	30	left	0.011
FYN-P1-L153	150	50	left	0.011
FYN-P1-L183	180	80	left	0.011

FYN-N1

Small diameter, large damping torques

Partial Rotation Angle Damping torque 100 Ncm to 300 Ncm

The damping direction of the rotary damper FYN-N1 can be either right or left rotation. The dampers can be directly mounted in the pivot point. During each reverse movement of the unilateral decelerating versions there is a certain return damping torque that depends on the size. Differentiation of the damping direction through coloured end cap. ACE rotary dampers are maintenance-free and ready-to-install.

Technical Data

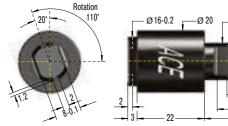
Construction size: Ø 20 mm

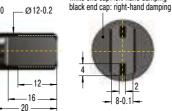
Lifetime: 50,000 cycles, even after this time, the dampers still produce over approx. 80 % of their original damping moment. The service life may be significantly higher or lower, depending on the application.

Operating temperature range: -5 $^\circ\text{C}$ to 50 $^\circ\text{C}$

Material: Outer body, Shaft: Plastic

Mounting: In any position


Rotation angle max.: 110°


Note: Damping direction: Right hand damping = damping action in clockwise direction (when looking onto the output shaft or output shaft sleeve, depending on the damper type). A play of approx. 5° can occur at the beginning of movement.

Mounting information: No axial or radial forces may be induced via the shaft.

Safety information: Do not use rotary dampers as supports. Provide an external guide or support.

On request: Special designs available on request.

Performance

renormance					
TYPES	Damping torque Ncm	Return Damping Torque Ncm	Damping direction	Weight kg	
FYN-N1-R103	100	20	right	0.012	
FYN-N1-R203	200	40	right	0.012	
FYN-N1-R253	250	40	right	0.012	
FYN-N1-R303	300	80	right	0.012	
FYN-N1-L103	100	20	left	0.012	
FYN-N1-L203	200	40	left	0.012	
FYN-N1-L253	250	40	left	0.012	
FYN-N1-L303	300	80	left	0.012	

white end cap: left-hand damping

FYN-U1

246

Small, strong and very robust

Partial Rotation Angle Damping torque 200 Ncm to 300 Ncm

The damping direction of the rotary damper FYN-U1 can be either right or left rotation. The dampers can be directly mounted in the pivot point. The body is made of especially robust die-cast zinc. During each reverse movement of the unilateral decelerating versions there is a certain return damping torque that depends on the size. ACE rotary dampers are maintenance-free and ready-to-install.

Technical Data

Construction size: Ø 16 mm

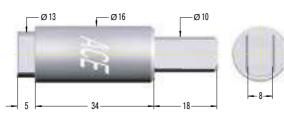
Lifetime: 50,000 cycles, even after this time, the dampers still produce over approx. 80 % of their original damping moment. The service life may be significantly higher or lower, depending on the application.

Operating temperature range: -5 °C to 50 °C

Material: Outer body, Shaft: Zinc die-cast

Mounting: In any position


Rotation angle max.: 115°


Note: Damping direction: Right hand damping = damping action in clockwise direction (when looking onto the output shaft or output shaft sleeve, depending on the damper type). A play of approx. 5° can occur at the beginning of movement.

Mounting information: No axial or radial forces may be induced via the shaft.

Safety information: Do not use rotary dampers as supports. Provide an external guide or support.

On request: Special designs available on request.

Performance

TYPES	Damping torque Ncm	Return Damping Torque Ncm	Damping direction	Weight kg
FYN-U1-R203	200	40	right	0.040
FYN-U1-R253	250	40	right	0.040
FYN-U1-R303	300	80	right	0.040
FYN-U1-L203	200	40	left	0.040
FYN-U1-L253	250	40	left	0.040
FYN-U1-L303	300	80	left	0.040

FYN-S1

The flat damper for constant component protection

Partial Rotation Angle Damping torque 5 Nm to 10 Nm

The self-compensating FYN-S1 rotary damper with zinc die-cast body provides a constant sequence of movement for different masses. The damping direction can be either right or left rotation. During each reverse movement of the unilateral decelerating versions there is a certain return damping torque that depends on the size. ACE rotary dampers are maintenance-free and ready-to-install.

Technical Data

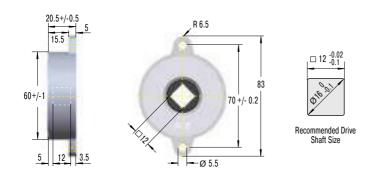
Construction size: Ø 60 mm

Lifetime: 50,000 cycles, even after this time, the dampers still produce over approx. 80 % of their original damping moment. The service life may be significantly higher or lower, depending on the application.

Operating temperature range: -5 °C to 50 °C

Material: Outer body: Zinc die-cast; Output shaft sleeve: Plastic

Mounting: In any position


Rotation angle max.: 130°

Note: Damping direction: Right hand damping = damping action in clockwise direction (when looking onto the output shaft or output shaft sleeve, depending on the damper type). A play of approx. 5° can occur at the beginning of movement.

Mounting information: No axial or radial forces may be induced via the shaft.

Safety information: Do not use rotary dampers as supports. Provide an external guide or support.

On request: Special designs available on request.

Performance

Damping torque	Return Damping Torque	Damping direction	Weight
Nm	Nm		kg
5 - 10	1.5	right	0.220
5 - 10	1.5	left	0.220
	Nm 5 - 10	Nm Nm 5 - 10 1.5	Nm Nm 5 - 10 1.5 right

247

FYT-H1 and FYN-H1

Specifically adjustable, strong braking force

Partial Rotation Angle, Adjustable Damping torque 2 Nm to 10 Nm

The damping direction of the adjustable FYT-H1 and FYT-H1 can be right, left or two-sided rotation. During each reverse movement of the unilateral decelerating versions there is a certain return damping torque that depends on the size. The brakes have a particularly robust zinc die-cast body and shafts made of steel. ACE rotary dampers are maintenance-free and ready-to-install.

Technical Data

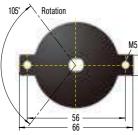
Construction size: Ø 45 mm

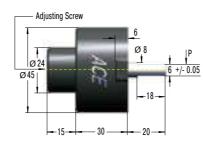
Lifetime: 50,000 cycles, even after this time, the dampers still produce over approx. 80 % of their original damping moment. The service life may be significantly higher or lower, depending on the application.

Operating temperature range: -5 °C to 50 °C

Material: Outer body: Zinc die-cast; Shaft: Steel

Mounting: In any position


Rotation angle max.: 105°


Maximum side load: 50 N

Note: Damping direction: Right hand damping = damping action in clockwise direction (when looking onto the output shaft or output shaft sleeve, depending on the damper type). A play of approx. 5° can occur at the beginning of movement.

Safety information: Do not use rotary dampers as supports. Provide an external guide or support.

On request: Special designs available on request.

Keyed output shaft shown in mid-travel position

Performance

Feriormance				
	Damping torque	Return Damping Torque	Damping direction	Weight
TYPES	Nm	Nm		kg
FYT-H1	2 - 10	0.5	bidirectional	0.234
FYN-H1-R	2 - 10	0.5	right	0.234
FYN-H1-L	2 - 10	0.5	left	0.234

248

FYT-LA3 and FYN-LA3

Adjustable high performance

Partial Rotation Angle, Adjustable Damping torque 4 Nm to 40 Nm

The damping direction of this adjustable high-performance rotary damper can be right, left or two-sided rotation. During each reverse movement of the unilateral decelerating versions there is a certain return damping torque that depends on the size. The brakes have a particularly robust zinc die-cast body and shafts made of steel. ACE rotary dampers are maintenance-free and ready-to-install.

Technical Data

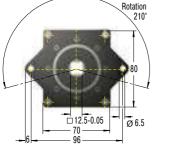
Construction size: Ø 80 mm

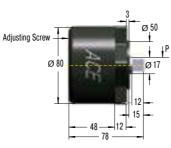
Lifetime: 50,000 cycles, even after this time, the dampers still produce over approx. 80 % of their original damping moment. The service life may be significantly higher or lower, depending on the application.

Operating temperature range: -5 °C to 50 °C

Material: Outer body: Zinc die-cast; Shaft: Steel

Mounting: In any position


Rotation angle max.: 210°


Maximum side load: 200 N

Note: Damping direction: Right hand damping = damping action in clockwise direction (when looking onto the output shaft or output shaft sleeve, depending on the damper type). A play of approx. 5° can occur at the beginning of movement.

Safety information: Do not use rotary dampers as supports. Provide an external guide or support.

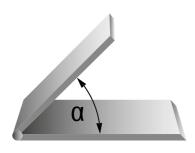
On request: Special designs available on request.

Keyed output shaft shown in mid-travel position

Performance

TYPES	Damping torque Nm	Return Damping Torque Nm	Damping direction	Weight kg
FYT-LA3	4 - 40	4	bidirectional	1.720
FYN-LA3-R	4 - 40	4	right	1.728
FYN-LA3-L	4 - 40	4	left	1.728

.


Issue 04.2018 – Specifications subject to change

Calculation Example

Damping of a Lid

To select an appropriate rotary damper for the adjacent calculation example, the length and the weight or the center of gravity of the flap have to be known. After determining the value of the max. torque at an unfavorable angle of the flap, select the appropriate damper.

Calculation Steps

- 1. Calculate max. torque damper will be exposed to (with example shown on the left max. torque is at $\alpha = 0^{\circ}$).
- 2. Decide upon rotation speed desired.
- 3. Choose a rotary damper that can handle the torque calculated above.
- 4. With the aid of the damper performance curves, check if the r.p.m. given at your torque corresponds to the desired closing speed of the lid.
- 5. If the r.p.m. is too high choose a damper with a higher torque rating.

If the r.p.m. is too low - choose a damper with a lower torque rating.

Closing Torque $M = L / 2 \cdot m \cdot g \cdot \cos \alpha$ (L / 2 = center of gravity)

- m Mass of a lid [kg] (1 kg = 9.81 N)L Length of lid from pivot [cm]
- n Rotation speed [r.p.m.]

Special Accessories

Toothed Racks for Rotary Dampers with Gear

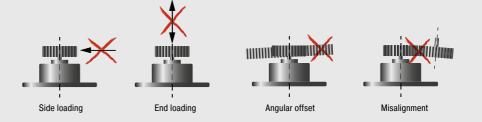
Rotary dampers with gears are available in four standard modules which can be optionally supplied with plastic toothed racks as accessories.

M0.5, M0.6, M0.8, M1.0 Toothed Rack

M0.8P Toothed Rack

Delivery Notes

Delivery form: Toothed plastic racks with modules 0.5 to 1.0 availables ex stock **On request:** Toothed metal racks


Dimensions					
	Α	В	С	Model	
TYPES	mm	mm	mm		
M0.5	250	4	4.5	rigid, milled	
M0.6	250	4	6	rigid, milled	
M0.8	250	6	8	rigid, milled	
M0.8P	170	8	4.1	flexible, milled	
M1.0	250	9	9	rigid, milled	
M1.0	500	10	10	rigid, milled	

Damping Direction

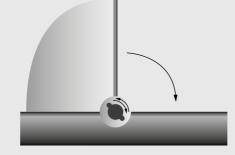
right hand damping = damping action in clockwise direction (when looking onto the output shaft)

Mounting Information

The rotary axis, square receptacles or free-wheel receptacles are not designed for lateral loads. An external guide or bearing support is fundamentally recommended.

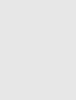
Application Examples

FDT


Finger protection when cutting bread

To exclude the possibility of injury when using bread slicing machines on self-service counters, the automatic bread slicing process does not start until the flap of the modern machine is closed. To simplify the operation and to thereby increase acceptance of the self-slicing principle among users, two-way rotary dampers of the type FDT-57 ensure smooth opening and closing of the door. Even when rotary dampers must act only in one direction, ACE has appropriate variants readily available.

Protective flaps secured with rotary dampers: the simple operation of bread slicing machines can then be easily managed by hand Daub Bakery Machinery BV, 5050 AB Goirle, Netherlands



FDN-R Invisible protection for cooker hoods

For ergonomic handling, modern cooker hoods can be driven by a motor into an up position and then down again. When driven downwards, an AC load can result in a total loss through current being fed back into the voltage source. One of the tasks of the ACE rotary dampers type FDN-63-R is to prevent this. The modern machine elements are also built to provide protection against motor failure. Sliding the hood down too quickly could lead to further costly damage to the hood and the ceiling console and even cause personal injury.

Rotary dampers in high-end cooker hoods safeguard the protection of drive units and protect chefs, even during power failures berbel Ablufttechnik GmbH, 48432 Rheine, Germany

Vibration Control

Vibration-Isolating Pads, Rubber-Metal Isolators Low Frequency Pneumatic Leveling Mounts

Isolate Unwanted Vibrations Effectively

Unique variety

This product group from ACE includes innovative solutions to provide customers with the best assistance in insulation technology and vibration isolation. These machine elements are also distinguished by their light design and exemplary variety.

The product range extends from extremely low frequency isolating pneumatic leveling mounts through to ready-to-install rubber-metal isolators and insulation plates. With this portfolio, ACE is capable of offering you customized vibration isolation for almost any application.

Vibration Isolation

Noise reduction and vibration isolation are becoming more and more important in our daily lives. This applies in particular to the workplace and the environments around production companies.

Preventing noise emissions or harmful vibrations is not only a necessity required by noise protection and occupational health and safety legislation; their sources must also be localized by means of targeted analysis in order to develop suitable improvement measures for achieving increased production quality. A second by-product of vibrations are their effects on the surrounding production environment and any measuring and testing facilities that may be in use.

Advantages

- improved working conditions for people and the environment
- more accurate production tolerances and increased product quality
- competitive and cost advantages thanks to lower reject rate in production
- increased production speed thanks to increased maximum machine dynamics
- longer tool and machine life thanks to lower stress
- faster and more accurate measuring results

Rubber-Metal Isolators

Ready-to-install isolators for quick selection

Rubber-metal isolators and machine feet are supplied ready-to-install and are used in a large variety of vibration isolation applications. Common applications are engines, compressors, transfer systems, machines, fans and blowers.

LEV

Leveling Mounts (height-adjustable machine feet)

Secure, adjustable stabilization for all types of machines, transfer systems, assembly stations, etc.

СМ

Cup Mounts (cup elements)

For isolating machinery and equipment. Fail-safe isolators for all axes in any installation position. Application examples: compressors, off-road vehicles, engines, fans, etc.

СОМ

Compression Mounts (pre-tensioned high-performance bearing surface) Vertically acting isolators for machinery and equipment. Applications include: blowers, compressors, motors, generators, presses, etc.

AAM

All Attitude Mounts (vibration-isolating fasteners)

Maintenance free isolators for decoupling parts and components in electronics, aerospace, the military, medicine, transfer systems, etc.

SFM

Stable Flex Mounts (stable machine feet) Extremely rugged and maintenance-free isolators, e.g. for marine applications, for diesel generators, in power generation or in off-road vehicles.

BM

Bubble Mounts (low-frequency vibration isolators)

For protecting small devices and electronic components, e.g. in medical technology, aerospace, electronic systems or computers.

UMO

Universal Mounts (universal connection isolators)

Maintenance-free connection isolators which can be implemented both radially and axially. Application examples: conveying systems, machinery and equipment, off-road, oil and gas industry, control systems, etc.

FL

Flex Locs (quick fastening elements)

Simple, efficient components with versatile applications as isolating fasteners for decoupling structure-borne sound in enclosures, housings, equipment and machinery. For application in mechanical engineering, in buildings, vehicles, or navigation.

Overview and Application Areas of Product Families

Vibration-Isolating Pads

Customized insulation technology through cutting and combining

A wide range of applications such as machine foundations, supports, decoupling elements, pipelines and subsequently protected machines require tailor-made solutions. Here with its product range of vibration insulating pads ACE offers comprehensive possibilities for insulation. The products are manufactured and supplied either as standard pads or as drawing parts according to customer request.

SLAB

Universal Damping Pads

For application on foundations for plants and machines, compressors, in pump stations, generators, for insulations, measuring tables, buildings, etc.

CEL

PAD

Low-Frequency Damping Pads

For use in foundations, buildings, transport routes, bridges, stairs, test benches, pump stations, generators, compressors, machines, etc.

Rugged Fiber and Elastomer Pads

For isolating and protecting foundations, such as presses, plants, machines, as well as for use in pump stations, crane runways, bridges and heavy-duty applications

Application overview

Туре	Machines	Transfer systems	Construction Transport	Blower Fan	Foundations	Control units Electrical systems	Off-road vehicles	
Rubber-	Metal Isolators							
LEV								
СМ								
СОМ								
MAA								
SFM							•	
BM								
UMO	•	•	•			•	•	
FL								
Vibration	-Isolating Pads							
SLAB								
CEL								
PAD								
Air Sprin	g Elements							
PLM								
PAL								

Overview and Application Areas of Product Families

Low Frequency Pneumatic Leveling Mounts

Highly efficient insulation - it can hardly get any better

Everywhere perfect isolation of measuring tables, test equipment and high-performance machines are important the low frequency pneumatic leveling mounts PLM and PAL are a good choice. On request a detailed system analysis will be carried out at the customer and the perfect solution will be developed.

PLM

Pneumatic Air Spring Elements

For an efficient isolation of measuring equipment, high-speed presses and machines.

PAL-3 to PAL-9

Small Size Air Spring Elements The perfect leveling and isolation system for smaller constructions that require precision and flexibility. Available in the system with many accessories.

PAL-18 to PAL-1000

Big Air Spring Elements with Automatic Level Controls

Isolation against disruptive vibrations and level-adjustment for test and measuring equipment. Isolating at extremely low-frequencies, these components are used in the automotive industry and in aerospace engineering.

More information about vibration control can be found in our special catalog and on our website www.acecontrols.com / Downloads

Engines Generators	Compressors	Oil and gas industry	Aerospace engineering	Presses	Medicine	Measuring tables	Test benches	Туре
						R	ubber-Metal I	solators
								LEV
								СМ
								СОМ
								MAA
								SFM
								BM
								UMO
								FL
						Vit	oration-Isolati	ng Pads
								SLAB
								CEL
								PAD
							Air Spring E	lements
								PLM
								PAL

Safety Products

Safety Shock Absorbers, Safety Dampers Clamping Elements

Highest Protection under any Circumstances

For any budget and all requirements

Safely slowing down damaging forces from moving loads or Emergency braking are united in this product group from ACE. Although the safety shock absorbers, profile dampers and clamping elements differ so much in design, every single ACE component provides the best protection for your machine.

They demonstrate their main advantages in emergency stop situations and, based on the protection they provide, are very cost-effective. Furthermore, they can all be easily integrated in the existing construction designs and largely work independent of energy supplies.

Safety Shock Absorbers

Perfect protection for the worst case scenario

As an alternative to the standard shock absorber, Safety shock absorbers are the tried and tested low cost method of preventing those occasional emergency stops. Designed for occasional use, they primarily serve as reliable, effective protection in emergency stop situations.

The maintenance-free and ready-to-install machine elements are characterized in every respect by the well-known high ACE quality and maximum energy absorption of up to 480,000 Nm/Cycle. This means, in the product-family SCS33 up to SCS64 a service life of up to 1,000 full load emergency cycles is achieved.

Safety shock absorbers from ACE are available in a large choice with strokes of 23 mm to 1,200 mm, and the arrangement of orifice pattern can be calculated and produced specifically to the customer's requirements and depending on the application.

Safety Shock Absorbers

SCS33 to SCS64	Page 262
Self-Compensating or Optimized Characteristic Industry design with high energy absorption Finishing and processing centres, Conveyor systems, Portal systems, Test stations	
SCS38 to SCS63	Page 266
High Rack Damper, Optimized Characteristic Low reaction forces with long strokes Shelf storage systems, Heavy load applications, Conveyor systems, Conveyor systems	
CB63 to CB160	Page 270
Crane Installations, Optimized Characteristic High resetting forces with gas pressure accumulator Heavy load applications, Heavy load applications, Conveyor systems, Portal systems	
EB63 to EB160	Page 272
Crane Installations, Optimized Characteristic Low return force with spring assembly Heavy load applications, Heavy load applications, Conveyor systems, Portal systems	
	Self-Compensating or Optimized Characteristic Industry design with high energy absorption Finishing and processing centres, Conveyor systems, Portal systems, Test stations SCS38 to SCS63 High Rack Damper, Optimized Characteristic Low reaction forces with long strokes Shelf storage systems, Heavy load applications, Conveyor systems, Conveyor systems CB63 to CB160 Crane Installations, Optimized Characteristic High resetting forces with gas pressure accumulator Heavy load applications, Heavy load applications, Conveyor systems, Portal systems EB63 to EB160 Crane Installations, Optimized Characteristic Low return force with spring assembly Heavy load applications, Heavy load applications, Conveyor systems,

Top machine protection

Latest damping technology

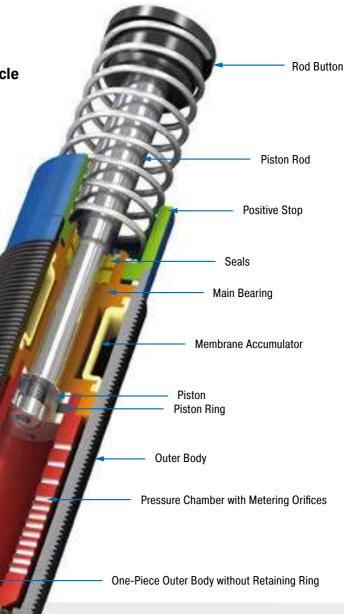
Attractive cost-benefit ratio

Maximum strokes

Wide application spectrum

Robust design

SCS33 to SCS64


Industry design with high energy absorption

Self-Compensating or Optimized Characteristic Energy capacity 310 Nm/Cycle to 18,000 Nm/Cycle Stroke 23.1 mm to 150 mm

Effective emergency stop: the ACE safety shock absorbers from the SCS33 to SCS64 product family are based on the innovative technology of the successful MAGNUM range shock absorbers. They are also maintenancefree and ready-to-install.

ACE uses our proprietary custom calculation program to design each shock absorber for the specific customer application. Customization helps reduce the risk of crashes and incorrect product sizing. Due to the optimized characteristic curve for the respective application, the energy absorption of these hydraulic machine elements can be increased to more than twice the level of the MAGNUM model of ACE industrial shock absorber per stroke. Users benefit from a service life of up to 1,000 full load emergency cycles with a very good price-performance ratio. Their compact design in sizes M33x1.5 to M64x2 makes them easy to integrate into current applications.

These slimline, high-performance safety shock absorbers are only designed for emergency stop situations. They can be used for a number of tasks in gantries and conveyor systems, processing centres or assembly machines.

Technical Data

Energy capacity: 310 Nm/Cycle to 18,000 Nm/Cycle

Impact velocity range: 0.02 m/s to 5 m/s. Other speeds on request.

Operating temperature range: -12 °C to 66 °C. Other temperatures on request.

Mounting: In any position

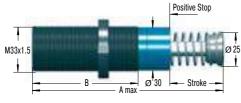
Positive stop: Integrated

Material: Outer body: Nitride hardened steel; Piston rod: Hard chrome plated steel; Rod end button: Hardened steel and corrosionresistant coating; Return spring: Zinc plated or plastic-coated steel; Accessories: Steel corrosion-resistant coating **Damping medium:** Automatic Transmission Fluid (ATF)

Application field: Finishing and processing centers, Conveyor systems, Portal systems, Test stations, Machines and plants, Swivel units, Cranes

Note: The shock absorber can be pushed through its stroke. In creep speed conditions the shock absorber provides minimal resistance and there is no braking effect.

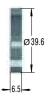
On request: Special oils, special flanges etc.



Safety Shock Absorbers SCS33

Self-Compensating or Optimized Characteristic

263


SCS33

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Accessories

250-0292 Locking Ring

 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$

250-0293

Rectangular Flange

250-0294 Side Foot Mounting Kit

L1	L2	
mm	mm	
95.3	49.3	
120.7	74.7	
134.9	49.3	
185.7	74.7	
95.3	49.3	
120.7	74.7	
	mm 95.3 120.7 134.9 185.7 95.3	mm mm 95.3 49.3 120.7 74.7 134.9 49.3 185.7 74.7 95.3 49.3

Dimension

250-0294 = 1 locknut, 2 flanges, 2 bars, 4 screws M6x40, DIN 912 Torque max.: 11 Nm Clamping torque: 90 Nm Bolts to mount assembled shock & mount not included.

Complete details required when ordering

Moving load: m (kg) Impact velocity range: v (m/s) max. Creep speed: vs (m/s) Motor power: P (kW) Stall torque factor: ST (normal, 2.5) (Alternatively: Propelling force F (N)) Number of absorbers in parallel: n

or technical data according to formula and calculations on page 275.

Ordering Example

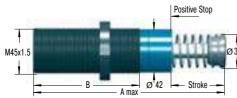
Safety Shock Absorber _____ Thread Size M33 _____ Max. Stroke without Positive Stop 1.97" (50 mm)

Identification No. assigned by ACE

Please indicate identification no. in case of replacement order

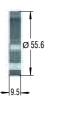
Please contact the factory for complete part number.

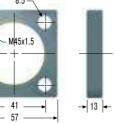
SCS33-50-1xxxx


Performance and Dimensions

	Max. Energy	Capacity							
			Return Force	Return Force				¹ Side Load Angle	Э
	E ₃ Self-compensating	E ₃ Optimised	min.	max.	Stroke	A max.	В	max.	Weight
YPES	Nm/cycle	Nm/cycle	N	N	mm	mm	mm	•	kg
SCS33-25	310	500	45	90	23.2	138	83	3	0.51
CS33-50	620	950	45	135	48.6	189	108	2	0.63

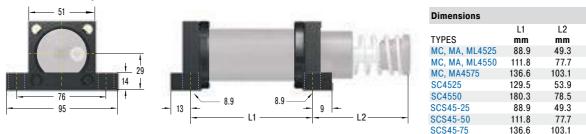
Self-Compensating or Optimized Characteristic




The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Accessories

250-0297 Locking Ring



250-0298 Square Flange

250-0300 Side Foot Mounting Kit

250-0300 = 1 locknut, 2 flanges, 2 bars, 4 screws M8x50, DIN 912 Torque max.: 27 Nm Clamping torque: 350 Nm Bolts to mount assembled shock & mount not included.

Complete details required when ordering

Moving load: m (kg) Impact velocity range: v (m/s) max. Creep speed: vs (m/s) Motor power: P (kW) Stall torque factor: ST (normal, 2.5) (Alternatively: Propelling force F (N)) Number of absorbers in parallel: n

or technical data according to formula and calculations on page 275.

Ordering Example

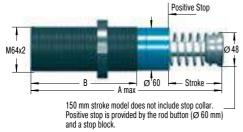
SCS45-50-1xxxx

Safety Shock Absorber ______ Thread Size M45 _____ Max. Stroke without Positive Stop 1.97" (50 mm) __ Identification No. assigned by ACE _____

Please indicate identification no. in case of replacement order

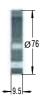
Please contact the factory for complete part number.

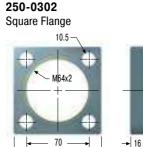
Performance and Dimensions


	Max. Energy	Capacity								
			Return Force	Return Force				¹ Side Load Angle		
TYPES	E ₃ Self-compensating Nm/cycle	E₃ Optimised Nm/cycle	min. N	max. N	Stroke mm	A max. mm	B mm	max.	Weight kg	
SCS45-25	680	1,200	70	100	23.1	145	95	3	1.14	
SCS45-50	1,360	2,350	70	145	48.5	195	120	2	1.36	
SCS45-75	2,040	3,500	50	180	73.9	246	145	1	1.59	

Safety Shock Absorbers SCS64

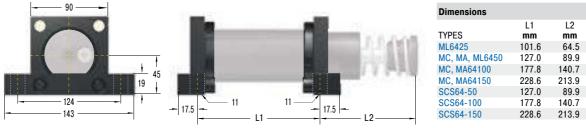
Self-Compensating or Optimized Characteristic


SCS64



The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

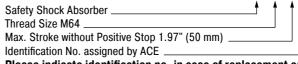
Accessories


250-0301 Locking Ring

250-0304

Side Foot Mounting Kit

250-0304 = 1 locknut, 2 flanges, 2 bars, 4 screws M10x80, DIN 912 Torque max.: 50 Nm Clamping torque: 350 Nm Bolts to mount assembled shock & mount not included.


Complete details required when ordering

Moving load: m (kg) Impact velocity range: v (m/s) max. Creep speed: vs (m/s) Motor power: P (kW) Stall torque factor: ST (normal, 2.5) (Alternatively: Propelling force F (N)) Number of absorbers in parallel: n

or technical data according to formula and calculations on page 275.

Ordering Example

SCS64-50-1xxxx

Please indicate identification no. in case of replacement order

Please contact the factory for complete part number.

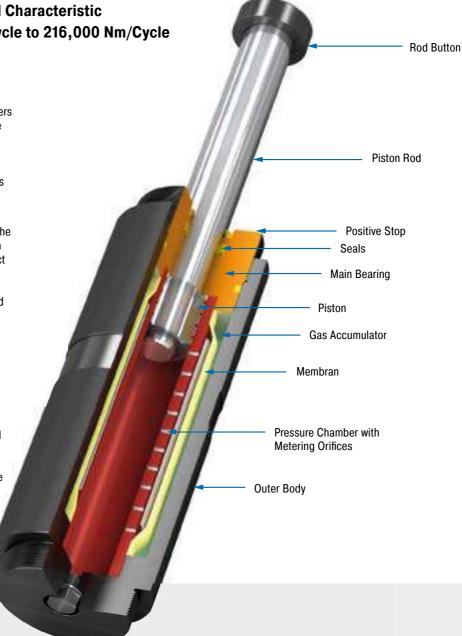
Performance and Dimensions

	Max. Energy	Capacity								
		Return Force	Return Force				¹ Side Load Angle			
	E ₃ Self-compensating	E ₃ Optimised	min.	max.	Stroke	A max.	В	max.	Weight	
TYPES	Nm/cycle	Ňm/cycle	N	N	mm	mm	mm	۰	kg	
SCS64-50	3,400	6,000	90	155	48.6	225	140	3	2.90	
SCS64-100	6,800	12,000	105	270	99.4	326	191	2	3.70	
SCS64-150	10,200	18,000	75	365	150.0	450	241	1	5.10	

¹ The values are reduced by 20 % at max. side load angle.

265

SCS38 to SCS63


Low reaction forces with long strokes

High Rack Damper, Optimized Characteristic Energy capacity 3,600 Nm/Cycle to 216,000 Nm/Cycle Stroke 50 mm to 1,200 mm

Slim with a long stroke: safety shock absorbers from the SCS38 to SCS63 product family are designed for emergency-stop applications. Strokes of up to 1,200 mm (47.24") are possible with these maintenance-free and ready-to-install dampers. Low reaction forces result due to the large strokes.

ACE uses our proprietary custom calculation program to design each shock absorber for the specific customer application. Customization helps reduce the risk of crashes and incorrect product sizing. The characteristic curve or damping characteristics of all safety shock absorbers from ACE are individually designed to the specific customer application. The metering orifices for the applications are specially calculated and produced. These tailor-made machine elements are the ideal protection because they are less expensive than industrial shock absorbers and are effective with up to 1,000 possible full load emergency stops.

Anyone who wants to reliably protect the end positions of rack operating equipment, conveyor and crane systems, heavy duty applications and test benches chooses these safety shock absorbers from ACE.

Technical Data

Energy capacity: 3,600 Nm/Cycle to 216,000 Nm/Cycle

Impact velocity range: 0.5 m/s to 4.6 m/s. Other speeds on request.

Reacting force: At max. capacity rating = 80 kN to 210 kN

Operating temperature range: -20 °C to 60 °C. Other temperatures on request.

Mounting: In any position

Positive stop: Integrated

Material: Outer body, Rod end button: Steel corrosion-resistant coating; Piston rod: Hard chrome plated steel

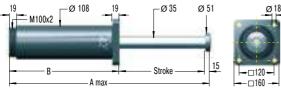
Damping medium: Automatic Transmission Fluid (ATF)

Filling pressure: Approx. 2 bar. Rod return by integrated nitogen accumulator.

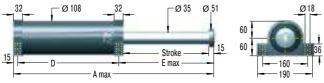
Application field: Shelf storage systems, Heavy load applications, Conveyor systems, Conveyor systems, Portal systems, Test stations

Note: The shock absorber can be pushed through its stroke. In creep speed conditions the shock absorber provides minimal resistance and there is no braking effect.

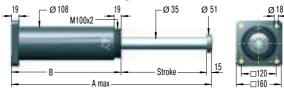
On request: Special oils, special flanges, additional corrosion protection etc. Integrated rod sensor for indicating the complete extension of the piston rod. Type normally closed or normally open, option PNP or NPN switch.



Safety Shock Absorbers SCS38


267

High Rack Damper, Optimized Characteristic


SCS38-F Front Flange

SCS38-S Foot Mount

SCS38-R Rear Flange

Technical Data

Impact velocity range: 0.90 m/s to 4.6 m/s

Complete details required when ordering

Moving load: m (kg) Impact velocity range: v (m/s) max. Creep speed: vs (m/s) Motor power: P (kW) Stall torque factor: ST (normal, 2.5) (Alternatively: Propelling force F (N)) Number of absorbers in parallel: n

or technical data according to formula and calculations on page 275.

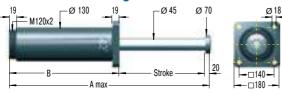
Performance and Dimensions

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

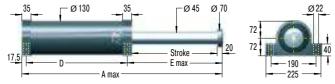
Ordering Example	SCS38-400-F-X
Safety Shock Absorber	<u>+</u> + + + +
Bore Size Ø 1.50" (38 mm)	
Stroke 15.75" (400 mm)	
Mounting Style: Front Flange	
Identification No. assigned by ACE	
Please indicate identification no. in case o	f replacement order

Please contact the factory for complete part number.

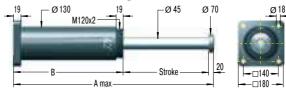
									1			
									Mounti	ng Style	Mountir	ng Style
									¹ F and S	¹ R		
		Return Force	Return Force	a		_	_	_	Side Load Angle	ů l	F and R	S
TYPES	Energy capacity Nm/cycle	min. N	max. N	Stroke mm	A max. mm	B mm	D mm	E max. mm	max.	max.	Weight kg	Weigl kg
SCS38-50	3,600	600	700	50	270	205	175	80	5.0	4.0	12.0	13.0
SCS38-100	7,200	600	700	100	370	255	225	132	5.0	4.0	14.0	15.0
SCS38-150	10,800	600	700	150	470	305	275	180	5.0	4.0	16.0	17.0
SCS38-200	14,400	600	700	200	570	355	325	230	5.0	4.0	18.0	19.0
SCS38-250	18,000	600	700	250	670	405	375	280	4.7	3.7	20.0	21.0
SCS38-300	21,600	600	700	300	785	470	440	330	3.9	2.9	22.0	22.0
SCS38-350	25,200	600	700	350	885	520	490	380	3.4	2.4	24.0	25.0
SCS38-400	28,800	600	700	400	1,000	585	555	430	3.0	2.0	26.0	27.0
SCS38-500	36,000	600	700	500	1,215	700	670	530	2.4	1.4	30.0	31.0
SCS38-600	43,200	600	700	600	1,430	815	785	630	1.9	0.9	34.0	34.0
SCS38-700	50,400	600	700	700	1,645	930	900	730	1.6	0.6	38.0	39.0
SCS38-800	57,600	600	700	800	1,860	1,045	1,015	830	1.3	0.3	43.0	44.0


¹ The values are reduced by 20 % at max. side load angle.

Issue 04.2018 - Specifications subject to change



High Rack Damper, Optimized Characteristic


SCS50-F Front Flange

SCS50-S Foot Mount

SCS50-R Rear Flange

Technical Data

Impact velocity range: 0.61 m/s to 4.6 m/s

Complete details required when ordering

Moving load: m (kg) Impact velocity range: v (m/s) max. Creep speed: vs (m/s) Motor power: P (kW) Stall torque factor: ST (normal, 2.5) (Alternatively: Propelling force F (N)) Number of absorbers in parallel: n

or technical data according to formula and calculations on page 275.

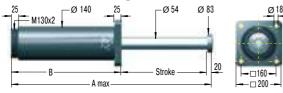
Performance and Dimensions

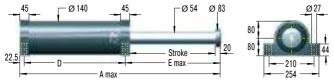
The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Ordering Example	SC	S50-	400	-F-X
Safety Shock Absorber Bore Size Ø 1.97" (50 mm)		Ť	Î	
Stroke 15.75" (400 mm)				
Mounting Style: Front Flange Identification No. assigned by ACE				
Please indicate identification no. in case of rep	placen	nent	ord	er

Please contact the factory for complete part number.

									Mountii	ng Style	Mounting Styl	
	_	Return Force	Return Force		_	_	_	_	-	ů l	F and R	S
TYPES	Energy capacity Nm/cycle	min. N	max. N	Stroke mm	A max. mm	B mm	D mm	E max. mm	max.	° max.	Weight kg	Weight kg
SCS50-100	14,000	1,000	1,200	100	390	270	235	138	5.0	4.0	22.0	23.0
SCS50-150	21,000	1,000	1,200	150	490	320	285	188	5.0	4.0	25.0	26.0
SCS50-200	28,000	1,000	1,200	200	590	370	335	238	5.0	4.0	27.0	28.0
SCS50-250	35,000	1,000	1,200	250	690	420	385	288	4.5	3.5	30.0	31.0
SCS50-300	42,000	1,000	1,200	300	805	485	450	338	3.8	2.8	33.0	34.0
SCS50-350	49,000	1,000	1,200	350	905	535	500	388	3.3	2.3	35.0	37.0
SCS50-400	56,000	1,000	1,200	400	1,020	600	565	438	2.9	1.9	38.0	40.0
SCS50-500	70,000	1,000	1,200	500	1,235	715	680	538	2.3	1.3	44.0	45.0
SCS50-600	84,000	1,000	1,200	600	1,450	830	795	638	1.9	0.9	50.0	51.0
SCS50-700	98,000	1,000	1,200	700	1,665	945	910	738	1.6	0.6	55.0	57.0
SCS50-800	112,000	1,000	1,200	800	1,880	1,060	1,025	838	1.3	0.3	61.0	63.0
SCS50-1000	140,000	1,000	1,200	1,000	2,310	1,290	1,255	1,038	1.0	0.0	72.0	74.0


¹ The values are reduced by 20 % at max. side load angle.


Safety Shock Absorbers SCS63

High Rack Damper, Optimized Characteristic

SCS63-F Front Flange

SCS63-S Foot Mount

SCS63-R Rear Flange

Technical Data

Impact velocity range: 0.50 m/s to 4.6 m/s

Complete details required when ordering

Moving load: m (kg) Impact velocity range: v (m/s) max. Creep speed: vs (m/s) Motor power: P (kW) Stall torque factor: ST (normal, 2.5) (Alternatively: Propelling force F (N)) Number of absorbers in parallel: n

or technical data according to formula and calculations on page 275.

Energy capacity

Nm/cycle

18,000

27,000

36,000

45,000

54,000

63,000

72,000

90,000

108,000

126,000

144,000

180,000

Return Force Return Force

max.

Ν

2,500

2,500

2,500

2.500

2,500

2.500

2,500

2,500

2,500

2,500

2,500

2,500

2,500

Stroke

mm

100

150

200

250

300

350

400

500

600

700

800

1,000

1,200

min.

Ν

1,500

1,500

1,500

1,500

1,500

1,500

1,500

1,500

1,500

1,500

1,500

1,500

1,500

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Ordering Example	SCS	63-4	400·	-F-X
Safety Shock Absorber	↑	1	ł	† †
Bore Size Ø 2.48" (63 mm)				
Stroke 15.75" (400 mm)				
Mounting Style: Front Flange				
Identification No. assigned by ACE				
Please indicate identification no. in case of re	placeme	ent (orde	er

Mounting Style

Side Load Angle Side Load Angle

¹ F and S

max.

5.0

5.0

5.0

5.0

5.0

5.0

5.0

4.2

34

2.9

2.5

1.9

1.4

Please contact the factory for complete part number.

1 R

max.

40

4.0

4.0

4.0

4.0

4.0

4.0

3.2

24

1.9

1.5

0.9

0.4

Mounting Style

S

Weight

kg

32.0

35.0

38.0

42.0

45.0

49.0

52.0

60.0

66.0

73.0

79.0

93.0

106.0

F and R

Weight

kg

29.0

32.0

35.0

38.0

41.0

45.0

48.0

55.0

62.0

69.0

75.0

89.0

102.0

Performance	and	Dimensions
remominance	anu	Dimensions

TYPES

SCS63-100

SCS63-150

SCS63-200

SCS63-250

SCS63-300

SCS63-350

SCS63-400

SCS63-500

SCS63-600

SCS63-700

SCS63-800

SCS63-1000

SCS63-1200

216,000 ¹ The values are reduced by 20 % at max. side load angle. В

mm

285

335

385

435

485

555

605

725

825

945

1,045

1,265

1,485

A max.

mm

405

505

605

705

805

925

1,025

1,245

1,445

1,665

1,865

2,285

2,705

D

mm

240

290

340

390

440

510

560

680

780

900

1,000

1,220

1,440

E max.

mm

143

193

243

293

343

393

443

543

643

746

843

1,043

1,243

CB63 to CB160

High resetting forces with gas pressure accumulator

Crane Installations, Optimized Characteristic Energy capacity 16,000 Nm/Cycle to 480,000 Nm/Cycle Stroke 100 mm to 800 mm

Robust powerhouse: the CB63 to CB160 product family with internal system seals are used in heavy duty areas for emergency stop. Even dirt or scratches to the piston rod do not lead to a leakage or failure. Compressed gas accumulators allow return forces of up to 100 kN (22,481 lb.) in the CB models, which can make applications in multiple bridge crane systems safer, for example. The absorber body and the robust, large-sized piston rod bearing are also designed for heavy duty operations.

ACE uses our proprietary custom calculation program to design each shock absorber for the specific customer application. Customization helps reduce the risk of crashes and incorrect product sizing. Just like all ACE safety shock absorbers, the characteristic curve or damping characteristics of each individual CB unit is individually designed to the customer application.

Whether its crane systems or machines in heavy duty applications e.g. in the metal industry or in mining, these powerful safety shock absorbers reliably protect construction designs against expensive failure.

Technical Data

Energy capacity: 16,000 Nm/Cycle to 480,000 Nm/Cycle

Impact velocity range: 0.5 m/s to 4.6 m/s. Other speeds on request.

Reacting force: At max. capacity rating = 187 kN to 700 kN

Operating temperature range: -12 °C to 66 °C. Other temperatures on request.

Mounting: In any position

Positive stop: Integrated

Material: Outer body, Rod end button: Steel corrosion-resistant coating; Piston tube: Hard chrome plated steel

Damping medium: Automatic Transmission Fluid (ATF)

Filling pressure: Approx. 5.6 bar to 5.9 bar. Rod return by integrated nitogen accumulator.

Application field: Heavy load applications, Heavy load applications, Conveyor systems, Portal systems

Note: The shock absorber can be pushed through its stroke. In creep speed conditions the shock absorber provides minimal resistance and there is no braking effect.

On request: Special oils, special flanges, additional corrosion protection etc.

270

Crane Installations, Optimized Characteristic

CB63-F Front Flange

Reacting force: at max. capacity rating = 187 kN max.

CB100-F Front Flange

Reacting force: at max. capacity rating = 467 kN max.

CB160-F Front Flange

Reacting force: at max. capacity rating = 700 kN max.

Complete details required when ordering

Moving load: m (kg) Impact velocity range: v (m/s) max. Creep speed: vs (m/s) Motor power: P (kW) Stall torque factor: ST (normal, 2.5) (Alternatively: Propelling force F (N)) Number of absorbers in parallel: n

Performance and Dimensions

or technical data according to formula and calculations on page 275.

E,

Nm/cycle

16,000

32,000

CB63-R Rear Flange

Reacting force: at max. capacity rating = 187 kN max.

CB100-R Rear Flange

Reacting force: at max. capacity rating = 467 kN max.

CB160-R Rear Flange

Reacting force: at max. capacity rating = 700 kN max.

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Ordering Example

		•
Safety Shock Absorber	<u>+</u> + + + + + + + + + + + + + + + + + +	ł
Bore Size 2.48" (63 mm)		
Stroke 15.75" (400 mm)		
Mounting Style: Front Flange		
Identification No. assigned by ACE		
Place indicate identification no in case of	replacement order	

Please indicate identification no. in case of replacement order

В

mm

288

468

648

828

495

665

835

1,005

1.175

940

1,340

1.740

1,008

Please contact the factory for complete part number.

С

mm

192

292

392

492

592

320

420

520

620

720

600

800

1.000

1 Side Load

Angle max.

3.5

3.0

2.5

2.0

1.5

4.0

3.5

3.0

2.5

2.0

4

3

2

Weight

kg

12.7

16.7

20.8

24.8

28.8

42.5

50.8

59.1

67.5

75.8

154.0

188.0

221.0

CB63-400-F-X

48.000 4.540 384,000 64,000 6,050 512,000 80 000 7 560 640,000 80,000 7,560 640,000 120,000 11,340 960,000 4,500 4.500 160.000 15.120 1.280.000 200,000 18,900 1,600,000

Effective Weight

We max.

kg

128,000

256.000

1.920.000

1,920,000

2,880,000

3.840.000

We min

kg

1,510

3.020

22,680

22.700

34,000

45.400

Return Force

min

Ν

1,700

1.700

1,700

1,700

1,700

4,500

4,500

4,500

11,000

11,000

11,000

Return Force

max.

Ν

18,500

24,000

27,000

29,000

30 000

44,000

56,000

65.000

71,000

76,000

71,000

71,000

71.000

Stroke

mm

100

200

300

400

500

200

300

400

500

600

400

600

800

A max.

mm

420

700

980

1,260

1,540

1,005

1.275

1,545

1.815

1,400

2,000

2.600

735

360,000 480.000 ¹ The values are reduced by 20 % at max. side load angle.

240,000

240,000

EB63 to EB160

Low return force with spring assembly

Crane Installations, Optimized Characteristic Energy capacity 16,000 Nm/Cycle to 480,000 Nm/Cycle Stroke 100 mm to 800 mm

Reduced return forces: the ACE safety shock absorbers from the EB-Family offer internal system seals, large sized piston rod bearings and the maximum energy absorption for emergency stop applications. However, an integrated spring package in the robust shock absorber body makes sure that the return forces are reduced to a fraction of those in the CB-Family.

The damping characteristics of the maintenance-free and ready-to-install EB models is individually designed specific to the customer application, just like all ACE safety shock absorbers.

These safety shock absorbers reliably perform their services in crane systems and in numerous heavy duty applications, even if the power fails, because these hydraulic machine elements are independent braking systems.

Rod Button Spring Package **Piston Tube** Gas Accumulator Positive Stop Wiper Mounting Flange Separator Piston Seal Piston Pressure Chamber with Metering Orifices Outer Body

Technical Data

Energy capacity: 16,000 Nm/Cycle to 480,000 Nm/Cycle

Impact velocity range: 0.5 m/s to 4.6 m/s. Other speeds on request.

Reacting force: At max. capacity rating = 187 kN to 700 kN

Operating temperature range: -12 °C to 66 °C. Other temperatures on request.

Mounting: In any position

Positive stop: Integrated

Material: Outer body, Rod end button: Steel corrosion-resistant coating; Piston tube: Hard chrome plated steel

Damping medium: Automatic Transmission Fluid (ATF)

Filling pressure: Approx. 0.55 bar to 1.1 bar. Rod return by integrated nitogen accumulator combined with additional return spring.

Application field: Heavy load applications, Heavy load applications, Conveyor systems, Portal systems

Note: The shock absorber can be pushed through its stroke. In creep speed conditions the shock absorber provides minimal resistance and there is no braking effect.

On request: Special oils, special flanges, additional corrosion protection etc.

272

Safety Shock Absorbers EB63 to EB160

Crane Installations, Optimized Characteristic

EB63-F Front Flange

Reacting force: at max. capacity rating = 187 kN max.

EB100-F Front Flange

Reacting force: at max. capacity rating = 467 kN max.

EB160-F Front Flange

Moving load: m (kg)

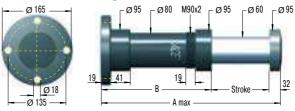
Creep speed: vs (m/s) Motor power: P (kW)

on page 275.

Impact velocity range: v (m/s) max.

Stall torque factor: ST (normal, 2.5) (Alternatively: Propelling force F (N)) Number of absorbers in parallel: n

Performance and Dimensions



Reacting force: at max. capacity rating = 700 kN max.

Complete details required when ordering

or technical data according to formula and calculations

EB63-R Rear Flange

Reacting force: at max. capacity rating = 187 kN max.

EB100-R Rear Flange

Reacting force: at max. capacity rating = 467 kN max.

EB160-R Rear Flange

Reacting force: at max. capacity rating = 700 kN max.

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Ordering Example

Ordering Example	EB63-400-F-X
Safety Shock Absorber	<u>+ + + + +</u>
Bore Size 2.48" (63 mm)	
Stroke 15.75" (400 mm)	
Mounting Style: Front Flange	
Identification No. assigned by ACE	
Please indicate identification no in case of r	enlacement order

ntification no, in case of replacement order

Please contact the factory for complete part number.

		Encotin	/e Weight	Return Force	Return Force					¹ Side Load	
	E3	We min.	We max.	min.	max.	Stroke	A max.	В	С	Angle max.	Weight
YPES	Nm/cycle	kg	kg	N	N	mm	mm	mm	mm	۰	kg
B63-100	16,000	1,510	128,000	700	6,900	100	420	288	192	3.5	13.7
B63-200	32,000	3,020	256,000	770	9,300	200	700	468	292	3.0	16.7
B63-300	48,000	4,540	384,000	830	10,600	300	980	648	392	2.5	21.8
B63-400	64,000	6,050	512,000	600	11,100	400	1,260	828	492	2.0	25.8
B63-500	80,000	7,560	640,000	670	12,000	500	1,540	1,008	592	1.5	29.8
B100-200	80,000	7,560	640,000	1,200	8,900	200	735	495	320	4.0	42.5
B100-300	120,000	11,340	960,000	950	14,100	300	1,005	665	420	3.5	50.8
B100-400	160,000	15,120	1,280,000	1,190	18,200	400	1,275	835	520	3.0	59.1
B100-500	200,000	18,900	1,600,000	930	20,800	500	1,545	1,005	620	2.5	68.5
B100-600	240,000	22,680	1,920,000	1,170	23,300	600	1,815	1,175	720	2.0	76.8
B160-400	240,000	22,700	1,920,000	1,870	18,100	400	1,400	940	600	4	155.6
B160-600	360,000	34,000	2,880,000	2,100	18,800	600	2,000	1,340	800	3	189.0
B160-800	480,000	45,400	3,840,000	2,400	19,500	800	2,600	1,740	1,000	2	222.3

Permitted Use

ACE safety shock absorbers are machine elements to brake moving masses in a defined end position in emergency stop situations for axial forces. The safety shock absorbers are not designed for regular operational usage.

Calculation of safety shock absorbers

The calculation of safety shock absorbers should generally be performed or checked by ACE.

Deceleration Properties

The orifice sizing and drill pattern in the pressure chamber are individually designed for each safety shock absorber. The respective absorption characteristic is optimized corresponding to the maximum mass that occurs in the emergency stop and the impact speed. Correspondingly, each safety shock absorber is given an individual identification number.

Model Code

For types SCS33 to 64, the individual five-digit identification numbers can be taken from the last digits of the shock absorber model code shown on the label. Example: SCS33-50-XXXXX. For type series SCS38 to SCS63, CB63 to CB160 and EB63 to EB160, the identification number is a five digit number. Example: SCS38-400-F-XXXXX. In addition to the model code, the label also shows the authorized maximum impact velocity and maximum authorised impact mass for the unit. The factory assigns these identification numbers. Please contact the factory for complete part number.

Mounting

To mount the shock absorber, we recommend the use of original ACE mounting accessories shown in catalog.

The mounting of each shock absorber must be exactly positioned so that the reaction force (Q) can be adequately transmitted into the mounting structure.

ACE recommends installation via the front flange -F mounting style that ensures the maximum protection against buckling. The damper must be mounted so that the moving loads are decelerated with the least possible side loading to the piston rod. The maximum permissable side load angles are detailed in our current catalogue.

The entire stroke length must be used for deceleration because only using part of the stroke can lead to overstressing and damage to the unit.

Mounting style front flange

Safety Shock Absorber SCS 38-66

Safety Shock Absorber CB

Environmental Requirements

The permissible **temperature range** for each shock absorber type can be found in our current catalogue.

Caution: Usage outside the specified temperature range can lead to premature breakdown and damage of of the shock absorbers which can then result in severe system damage or machine failures.

Trouble free operation outdoors or in damp environments is only warranted if the dampers are coated with a specific corrosion protection finish.

Initial Start-Up Checks

First impacts on the shock absorber should only be tried after correctly mounting and with reduced impact speeds and – if possible – with reduced load. Differences between calculated and actual operating data can then be detected early on, and damage to your system can be avoided. If the shock absorbers were selected on calculated data that does not correspond to the maximum possible loading (i.e. selection based on drive power being switched off or at reduced impact speed) then these restricted impact conditions must not be exceeded during initial testing or subsequent use of the system. Otherwise you risk damaging the shock absorbers and/or your machine by overstressing materials. After the initial trial check that the piston rod fully extends again and that there are no signs of oil leakage. Also check that the mounting hardware is still securely tightened. You need to satisfy yourself that no damage has occurred to the piston rod, the body, or the mounting hardware.

Fixed Mechanical Stop

Safety shock absorbers do not need an external stop as a stroke limiter. The stroke of the safety absorber is limited by the stop of the impact head on the shock absorber. For types SCS33 to SCS64, the fixed stop point is achieved with the integrated stop collar.

What Needs to be Checked after a Full Load Impact?

Safety shock absorbers that were originally checked only at reduced speed or load need to be checked again after a full load impact (i.e. emergency use) has occurred. Check that the piston rod fully extends to its full out position, that there are no signs of oil leakage and that the mounting hardware is still securely fixed. You need to satisfy yourself that no damage has occurred to the piston rod, the body, or the mounting hardware. If no damage has occurred, the safety shock absorber can be put back into normal operation (see **initial start-up**).

Maintenance

Safety shock absorbers are sealed systems and do not need special maintenance. Safety shock absorbers that are not used regularly (i.e. that are intended for emergency stop systems) should be checked within the normal time frame for safety checks, but **at least once a year**. At this time special attention must be paid to checking that the piston rod resets to its fully extended position, that there is no oil leakage and that the mounting brackets are still secure and undamaged. The piston rod must not show any signs of damage. Safety shock absorbers that are **in use regularly** should be checked **every three months**.

Repair Notice

If any damage to the shock absorber is detected or if there are any doubts as to the proper functioning of the unit please send the unit for service to ACE. Alternatively contact your local ACE office for further advice.

Detailed information on the above listed points can be taken from the corresponding operating and assembly instructions.

Formulas and Calculations

Calculation Data for the Design of Safety Shock Absorbers

ACE shock absorbers provide linear deceleration and are therefore superior to other kinds of damping element. It is easy to calculate around 90 % of applications knowing only the following four parameters:

2. 3.	Weight to be decelerated Impact velocity at shock absorber Propelling force Number of absorbers in parallel	W v _o F n	[kg] [m/s] [N]			
Key	to symbols used					
E ₁ E ₂ E ₃ ¹ E ₄	Kinetic energy per cycle Propelling force energy per cycle Total energy per cycle $(E_1 + E_2)$ Total energy per hour $(E_3 \cdot x)$		Nm Nm Nm Nm/hr	² v _D F C S	Impact velocity at shock absorber Propelling force Cycles per hour Shock absorber stroke	m/s N 1/hr m

¹ E₄	Total energy per hour (E ₃ · x)	Nm/hr	S	Shock absorber stroke	m
We	Effective weight	kg	Q	Reaction force	Ν
W	Weight to be decelerated	kg	t	Deceleration time	S
n	Number of shock absorbers (in parallel)		а	Deceleration	m/s²
² V	Velocity at impact	m/s			

¹ All mentioned values of E₄ in the capacity charts are only valid for room temperature. There are reduced values at higher temperature ranges.

² v or v₀ is the final impact velocity of the mass. With accelerating motion the final impact velocity can be 1.5 to 2 times higher than the average. Please take this into account when calculating kinetic energy.

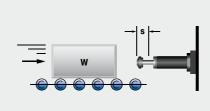
In all the following examples the choice of shock absorbers made from the capacity chart is based upon the values of (E_3) , (E_4) , (We) and the desired shock absorber stroke (s).

Note: When using several shock absorbers in parallel, the values (E_3) , (E_4) and (We) are divided according to the number of units used.

Application	Formula	Example	
19 Wagon against 2 shock absorbers $ \begin{array}{c} + s \leftrightarrow s + \\ \hline Fp \\ \hline Fp \\ \hline W \\ \hline \hline \hline W \\ \hline \hline \hline \hline W \\ \hline		W = 5000 kg v = 2 m/s F = 3500 N s = 0.10 m (chosen)	$\begin{array}{llllllllllllllllllllllllllllllllllll$
20 Wagon against wagon $ \xrightarrow{+ s }_{Fp} \underbrace{w_1}_{W_2} \underbrace{w_2}_{W_2} w_2$	$ \begin{array}{l} E_{1} & = \frac{W_{1} \cdot W_{2}}{(W_{1} + W_{2})} \cdot (v_{1} + v_{2})^{2} \cdot 0.5 \\ E_{2} & = F \cdot s \\ E_{3} & = E_{1} + E_{2} \\ v_{D} & = v_{1} + v_{2} \end{array} $		$ \begin{array}{llllllllllllllllllllllllllllllllllll$
21 Wagon against wagon 2 shock absorbers $\downarrow s \mid s \mid +$ Fp W_1 W_2	$\begin{array}{ll} E_{1} & = \frac{W_{1} \cdot W_{2}}{(W_{1} + W_{2})} \cdot (v_{1} + v_{2})^{2} \cdot 0.25 \\ E_{2} & = F \cdot s \\ E_{3} & = E_{1} + E_{2} \\ v_{D} & = \frac{v_{1} + v_{2}}{2} \end{array}$		$ \begin{array}{llllllllllllllllllllllllllllllllllll$

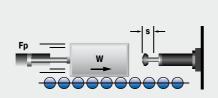
Application Examples

SCS45


Controlled emergency stop

ACE safety shock absorbers protect precision assembly jigs for the aircraft industry. The basic mount of this coordinate measuring machine for the production of parts in the aircraft industry is made of granite and must not be damaged. To avoid damage from operating errors or mishandling, all movement axes were equipped with safety shock absorbers of the type SCS45-50EU. If the turntables malfunction the safety shock absorbers decelerate the loads before expensive damage can occur to the granite measuring tables.

Optimally protected turntable


scs33, scs45 High-level protection of linear modules

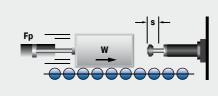
Safety shock absorbers produced by ACE are installed in the top linear system models of one of the most prestigious companies in the field of drive and control technology. Their job: to protect the z-axis from damage caused by uncontrolled movements. Various safety dampers are used for different load ranges. Tests have shown that, in the worst case, a collision speed of up to 5 m/s might occur. To be on the safe side, the interpretations were based in all cases on a slightly higher value.

For protecting equipment and modules such as these, the SCS series from ACE is the ideal solution in the emergency stop sector Roth GmbH & Co. KG, 90411 Nürnberg, Germany and Bosch Rexroth AG, 97816 Lohr am Main, Germany

276

SCS38

Safe driving in end positions with ACE


The aim was to protect a driving simulation capsule on two of its eight axes. The demands placed on a potential emergency stopper were high because it was clear that its failure would lead to massive damage to the complete construction as well as to the capsule. Even the possibility of damage to the health of the test personnel could not be ruled out and was taken into consideration in a diverse range of mass-speed combinations. Two ACE safety shock absorbers now safely contain destructive forces, e.g. during power outages, and eliminate high risks.

ACE safety shock absorbers protect end positions in two axes of a driving simulator Bosch Rexroth BV, Boxtel 5281 RV, The Netherlands

and University of Stuttgart - FKFS, 70569 Stuttgart, Germany

Safety Dampers

Top for emergency stopping

The extremely successful TUBUS series from ACE is suitable for emergency stopping, as overrun protection or as end stop dampers. Available in different variations for heavy duty or crane installations, these profile dampers are perfect when loads do not need to be instantly decelerated or when working under extreme conditions.

Manufactured in co-polyester elastomer, the highly resistant absorbers provide high force and energy absorption in areas where other materials fail or where a similarly high service life of up to 1 million load changes cannot be achieved. They are cost-effective and distinguished by the small, light design. With energy absorption within a range of 450 and 17,810 Nm, they can be considered as an alternative to hydraulic end position damping.

Safety Dampers

TUBUS TC and TC-S

Crane Installations **Compact powerhouse** Crane systems, Loading and lifting equipment, Hydraulic devices, Electro-mechanical drives

Extremely durable

Highly resistant co-polyester elastomers

Lightweight designs

Cost-effective use

Heavy-duty versions available

Page 280

TUBUS TC and TC-S

Compact powerhouse

Crane Installations

Energy capacity 630 Nm/Cycle to 17,810 Nm/Cycle Maximum stroke 30 mm to 198 mm

For even more protection: the profile dampers from the TC range of the ACE TUBUS-Series can also be used as safety dampers. These maintenance-free, ready-to-install damping elements made of co-polyester elastomer have been specially developed for use in crane systems and meet the international industry standards for OSHA and CMAA. The TC-S design employs a unique dual concept to achieve the spring rate required for crane systems.

Whether TC-S or TC, this range of models represents a cost-effective solution with high energy absorption for energy management systems. The very small and light design of \emptyset 64 mm to \emptyset 176 mm (\emptyset 2.52" to \emptyset 6.93") progressively covers energy absorption within a range of 450 Nm to 17,810 Nm (3,983 in-lbs to 157,632 in-lbs).

The profile dampers from the TC range protect cranes, loading and lifting equipment, hydraulic units and much more.

Technical Data

Energy capacity: 630 Nm/Cycle to 17,810 Nm/Cycle

Energy absorption: 31 % to 64 % Dynamic force range: 80,000 N to 978,000 N

Operating temperature range: -40 °C to 90 °C

Construction size: 64 mm to 176 mm

Material hardness rating: Shore 55D Material: Profile body: Co-Polyester Elastomer

Mounting: In any position

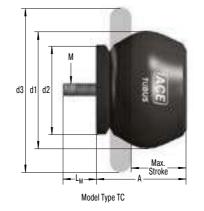
Environment: Resistant to microbes, seawater or chemical attack. Excellent UV and ozone resistance. Material does not absorb water or swell.

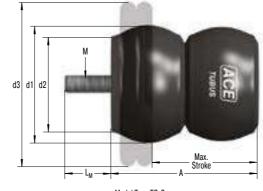
Impact velocity range: Max. 5 m/s

Torque max.: M12: 50 Nm M16: 40 Nm (DIN912) M16: 120 Nm (shouldered screw)

Application field: Crane systems, Loading and lifting equipment, Hydraulic devices, Electro-mechanical drives

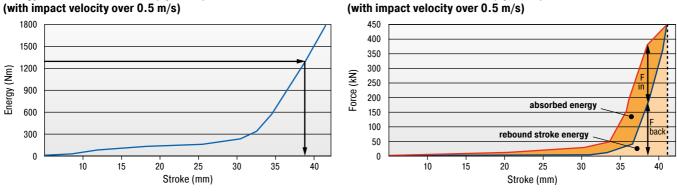
Note: Suitable for emergency stop applications and for continous use. For applications with preloading and increased temperatures please consult ACE.


On request: Special strokes, -characteristics, -spring rates, -sizes and -materials.



Crane Installations

TC and TC-S



Model Type TC-S

Force-Stroke Characteristic (dynamic)

Characteristics

Type TC90-49 Energy-Stroke Characteristic (dynamic) (with import valuating over 0.5 m/a)

Type TC90-49

With the aid of the characteristic curves above you can estimate the proportion of the total energy that will be absorbed. Example: With impact energy of 1,300 Nm the Energy-Stroke diagram shows that a stroke of about 38 mm is needed. On the Force-Stroke diagram you can estimate the proportion of absorbed energy to rebound energy at this stroke length. Note: With these types the return force towards the end of the stroke is significant and we recommend you try to use a minimum of 90 % of the total stroke available.

Dynamic (v > 0.5 m/s) and static (v \leq 0.5 m/s) characteristics of all types are available on request.

The calculation and selection of the most suitable damper should be carried out or be approved by ACE.

Ordering Example	TC83-73-8					
TUBUS Crane Buffer	+ + +					
Outer-Ø 83 mm						
Stroke 73 mm						
Model Type Soft						

Performance and Dimensions

		Emergency Stop								
	1 E3	E,	Stroke max.	Α	d1	d2	d3	L	М	Weight
TYPES	Nm/cycle	Nm/cycle	mm	mm	mm	mm	mm	mm		kg
TC64-62-S	450	630	62	79	64	52	89	12	M12	0.174
TC74-76-S	980	1,372	76	96	74	61	114	12	M12	0.260
TC83-73-S	1,940	2,715	73	94	83	69	127	12	M12	0.328
TC86-39	1,210	1,695	39	56	86	78	133	12	M12	0.284
TC90-49	1,640	2,295	49	68	90	67	124	12	M12	0.264
TC100-59	1,785	2,500	59	84	100	91	149	12	M12	0.543
TC102-63	1,970	2,760	63	98	102	82	140	22	M16	0.662
TC108-30	1,900	2,660	30	53	108	77	133	12	M12	0.392
TC117-97	3,710	5,195	97	129	117	100	188	16	M16	1.043
TC134-146-S	7,310	10,230	146	188	134	117	215	30	M16	1.695
TC136-65	4,250	5,950	65	106	136	106	178	16	M16	1.147
TC137-90	6,350	8,890	90	115	137	113	216	21	M16	1.201
TC146-67-S	8,330	11,660	67	118	146	99	191	16	M16	1.573
TC150-178-S	8,860	12,400	178	241	150	132	224	16	M16	2.674
TC153-178-S	7,260	10,165	178	226	153	131	241	16	M16	2.522
TC168-124	10,100	14,140	124	166	168	147	260	16	M16	2.533
TC176-198-S	12,725	17,810	198	252	176	150	279	16	M16	3.660

¹ Max. energy capacity per cycle for continous use.

Clamping Elements

On-the-spot clamping and stopping in emergencies and other situations

Clamping elements from the LOCKED series also serve the purpose of safety. These ACE products clamp and decelerate loads and are suitable for perfectly controlled holding, both linear and rotary, in all processes.

Alongside ACE LOCKED solutions for conventional rail, rod or rotation clamping, special clamps with safety function for Z-axes, which reliably help secure axes with a gravitational load, are available in the LOCKED LZ-P series. The latter solution is available for both pneumatic operation and as an electric version. Whether Z-axes, linear guide, rod or rotation clamping, the choice is (typical of ACE) as large as the performance capacity of the products, which are compatible with the solutions of all standard manufacturers.

LOCKED by ACE. After all, safe is safe.

Increased process reliability

Available as clamping and emergency stop brakes

Very short stop distances

Very high clamping forces

Compact designs

Ideal for all standard sizes

284

Rail Clamping

For safe deceleration of rail-guided construction elements

Safe deceleration of a mass that is traversed with the help of a rail and guide rail and track carriage combination must be complied with and not only for safety reasons; reliable clamps in the production processes are also becoming increasingly important.

Both features can be taken care of by the clamping elements from ACE. All clamping elements work with the patented spring steel plate system.

This system achieves braking and clamping forces of up to 10,000 N. The clamping elements are always individually adapted to the used linear guide. They are available for all rail sizes and profiles for all renowned manufacturers.

Function of clamping elements LOCKED PL/SL/PLK/SLK

All process and safety clamps work with the reinforced spring steel plate system.

Compressed air is introduced between the two spring plates, which are connected with a surrounding rubber coating.

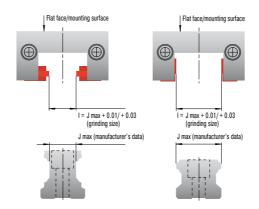
If pressure is applied, the clamping element can freely move; if the clamping element is vented clamping to the guide rail follows.

Clamping element vented

Released

The chamber filled with compressed air between the spring steel plates relaxes and thus releases the clamping/brake pads from the rail. The clamping element is now free to move.

Engaged


The clamping force of the mechanically pre-stressed spring steel plates is transferred to the clamping/brake pads as holding force. The clamping element is clamped on the guide rail.

Slot dimensions between braking and clamping linings and linear guide rail

The internal dimension "I" between the linings of every LOCKED rail clamping is ground to an exact value.

This is always 0.01 to 0.03 mm greater than the upper limit J max. of the respective linear guide rail (see drawing), resulting from the manufacturer's directives.

The maximum holding force results at J max. and, in the most unfavorable case, holding force losses up to 30 % can occur (see table).

Air Gap	Loss in Holding
Lining/Linear Guide Rail	Force
mm	%
0.01	5
0.03	10
0.05	20
0.07	30

Different brake pads for PL/PLK and for SL/SLK

The process clamps and safety clamps are available completely identical in their structure.

They differ only in the clamping and brake pads material.

Clamping

Braking

Position Clamping

The types of the LOCKED series PL and PLK are designed for clamping directly on the linear guide. The clamping linings are produced from tool steel and offer 100 % clamping force, even in the case of lubricated rails.

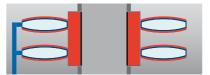
Position Clamping and Emergency Stop Braking

With the typical SL, SLK, low-wear sinter graphite linings are employed. These enable both a position clamping, as well as emergency stop braking on the linear guide. In case of lubricated rails, a stopping force of 60 % of the nominal stopping force should be considered.

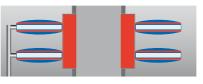
Rod Clamping

The modular solution for exact holding at certain positions

Safe and reliable stopping at a position or an operating state is an important part of many production processes. This task can be performed by the clamping elements from ACE. If clamping on a rod is required, the clamping elements of the PN and PRK families are the right choice.


Thanks to the patented spring steel plate system the rod clamps transfer clamping forces of up to 36,000 N directly to the (piston) rod.

The PN and PRK rod clamps can absorb both axial and rotary forces.


Function of clamping elements LOCKED PN and PRK

Consisting of a deck plate, one to four clamping units and a base plate, all rod clamps work with the reinforced spring steel plate system.

Through that, both axial and rotary forces can be absorbed.

Clamping element is released

Clamping element is engaged

Released

The membrane filled with compressed air relaxes the spring steel plate system and releases the clamping sleeve.

Engaged

The clamping force of the mechanically pre-stressed spring steel plates system is transferred as as a holding force into the clamping sleeve. The rod or shaft is engaged.

Intelligent component system solution

By connecting up to four clamping units between the base and deck plates, it is possible to easily increase the clamping force.

Modular construction

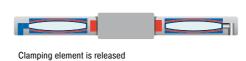
Component tolerances for LOCKED PN and PRK

Design-related, the addition of the individual component tolerances leads to an elastic axial tolerance allowance. This axial tolerance allowance can be up to 500 μm in the clamped status, according to implementation!

The axis/shaft/rod must be machined with at least h9-fit (or better) above h5. Deviations from the prescribed tolerance can lead to reduction of the stopping force, or functional failure.

Rod clamping

Clamp Versions


Rotational Clamping

The reliable protection against twisting

Reliable holding and securing against a rotation of a position are important elements in many production processes. This task can be performed by means of the clamping elements of the Locked R family. The rotational clamps can, thanks to the patented spring steel plate system, transfer holding torques of up to 4,680 Nm to the shaft. The spring accumulator can immediately clamp the axis during a power failure.

Function of clamping elements LOCKED R

The reinforced spring steel plate system transfers holding torques in the shortest possible time.

Clamping element is engaged

Released

The membrane filled with compressed air relaxes the spring steel plate system and releases the clamping ring. The shaft is free to move.

Engaged

The clamping force of the membrane/spring steel plates systems is transferred to the holding force of the clamping ring. The shaft is clamped.

Function of clamping elements LOCKED R-Z with additional air

If higher holding torques are required, the rotational clamps with an additional air function are used.

With the same size, significantly higher holding torques are achieved.

Encreased clamping force with additional air

Engaged with additional air

By filling the outer membrane chamber with additional compressed air (4 or 6 bar), there is the possibility to increase the clamping force. The clamping element is engaged in this condition.

Clamping Elements

LOCKED PL

Process Clamping for Rail Systems **High clamping power for all rail profiles** tool machines, transport systems, feeder installations, positioning tables

LOCKED PLK

Process Clamping for Rail Systems, Compact **High clamping power for all compact design rail profiles** tool machines, transport systems, feeder installations, positioning tables

LOCKED SL

Safety Clamping for Rail Systems **Combined clamping and braking** tool machines, transport systems, feeder installations, positioning tables

LOCKED SLK

Safety Clamping for Rail Systems, Compact **Combined compact design clamping and braking** tool machines, transport systems, feeder installations, positioning tables

LOCKED LZ-P

Rail Clamping for Z-Axes **Certified safety clamping** Z-axes, vertical conveyor systems, jacking applications

LOCKED PN

Pneumatic Rod Clamping **Rod clamping with maximum clamping force** jacking systems, light presses, punching/stamping machines, stacking units

LOCKED PRK

Pneumatic Rod Clamping, Compact **Rod clamping with maximum clamping force in a compact size** jacking systems, light presses, punching/stamping machines, stacking units

LOCKED R

Pneumatic Rotational Clamping **Strong holding force on the shaft** drive shafts, torque motors, conveyor systems

Application Examples

SL

Special LOCKED SL elements for emergency stops

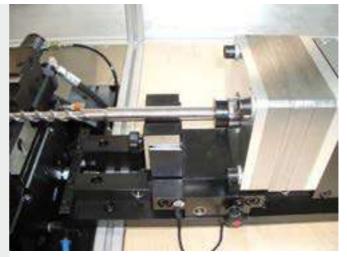
In order to secure the processing position of a special lathe in both the horizontal and the vertical axis, ACE LOCKED elements of the type SL35-1-6B are installed. They have the further advantage of preventing slippage through the vertical axis in the case of a malfunction. The products used in the SL-series not only have the correct track width and offer very high process clamping forces of up to 10,000 N, but can also apply the same force as an emergency-stop braking function. This is due to the specially integrated brake linings made of low-wear sintered metal.

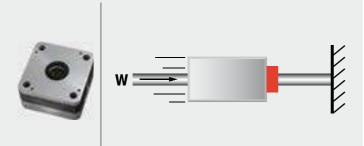
ACE clamping and safety elements maintain a rock-solid hold on the axes in special lathes and secure the predetermined positions both horizontally and vertically

RASOMA Werkzeugmaschinen GmbH, 04720 Döbeln, Germany

SLK Secure rail clamping

ACE clamping elements secure machines in the tyre industry. The goods accumulator/compensator of a material dispenser carries meandering, coiled, highly tear resistant material strips, which are fed at high speed to a tyre-manufacturing machine. To prevent damaging the machine, innovative type SLK25-1-6B clamping elements are employed.


Secure material accumulator


PN

Clamping elements as a variable stop

ACE clamping elements are inserted, as a variable stop, during a joining process for the production of drilling tools. They meet the requirements for a precise positioning of the workpiece head and an adaptation of the length tolerance of up to 3 mm, ideally. ACE was awarded the contract because the clamping element is attached on a bar and its PN LOCKED series is specifically designed for this purpose. For clamping on linear guides, rails, axles and shafts, ACE offers a great range of high-performance models.

ACE clamping elements assist in the production of drilling tools: the LOCKED-P system clamps and at the same time absorbs the opposing forces of the joining process without difficulty GRAF automation GmbH, 88214 Ravensburg, Germany



PN Secure rod clamping

Pneumatic rod clamping allows hydraulic presses to be used for any application. With the help of hydraulic presses, cut ceramic parts are manufactured during the week. So that the rods of the upper and lower stamping plate do not sag when the press is at a standstill over the weekend or during holidays and therefore have to be setup again on the next working day, PN80-25-2-6B type rod clamps are used.

Pneumatic rod clamping allows hydraulic presses to be used for any application KOMAGE Gellner Maschinenfabrik KG, 54427 Kell am See, Germany

Distribuidores autorizados

inf⊚ ▶/CESEHSA.com.mx

